199 research outputs found
Global Existence Results and Uniqueness for Dislocation Equations
We are interested in nonlocal Eikonal Equations arising in the study of the
dynamics of dislocations lines in crystals. For these nonlocal but also non
monotone equations, only the existence and uniqueness of Lipschitz and
local-in-time solutions were available in some particular cases. In this paper,
we propose a definition of weak solutions for which we are able to prove the
existence for all time. Then we discuss the uniqueness of such solutions in
several situations, both in the monotone and non monotone case
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
The spread of infectious diseases crucially depends on the pattern of
contacts among individuals. Knowledge of these patterns is thus essential to
inform models and computational efforts. Few empirical studies are however
available that provide estimates of the number and duration of contacts among
social groups. Moreover, their space and time resolution are limited, so that
data is not explicit at the person-to-person level, and the dynamical aspect of
the contacts is disregarded. Here, we want to assess the role of data-driven
dynamic contact patterns among individuals, and in particular of their temporal
aspects, in shaping the spread of a simulated epidemic in the population.
We consider high resolution data of face-to-face interactions between the
attendees of a conference, obtained from the deployment of an infrastructure
based on Radio Frequency Identification (RFID) devices that assess mutual
face-to-face proximity. The spread of epidemics along these interactions is
simulated through an SEIR model, using both the dynamical network of contacts
defined by the collected data, and two aggregated versions of such network, in
order to assess the role of the data temporal aspects.
We show that, on the timescales considered, an aggregated network taking into
account the daily duration of contacts is a good approximation to the full
resolution network, whereas a homogeneous representation which retains only the
topology of the contact network fails in reproducing the size of the epidemic.
These results have important implications in understanding the level of
detail needed to correctly inform computational models for the study and
management of real epidemics
Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface
We describe scanning tunneling spectroscopy (STS) measurements performed on
individual cobalt (Co) atoms deposited onto backgated graphene devices. We find
that Co adatoms on graphene can be ionized by either the application of a
global backgate voltage or by the application of a local electric field from a
scanning tunneling microscope (STM) tip. Large screening clouds are observed to
form around Co adatoms ionized in this way, and we observe that some intrinsic
graphene defects display a similar behavior. Our results provide new insight
into charged impurity scattering in graphene, as well as the possibility of
using graphene devices as chemical sensors.Comment: 19 pages, 4 figure
Global existence for a system of non-linear and non-local transport equations describing the dynamics of dislocation densities
In this paper, we study the global in time existence problem for the
Groma-Balogh model describing the dynamics of dislocation densities. This model
is a two-dimensional model where the dislocation densities satisfy a system of
transport equations such that the velocity vector field is the shear stress in
the material, solving the equations of elasticity. This shear stress can be
expressed as some Riesz transform of the dislocation densities. The main tool
in the proof of this result is the existence of an entropy for this syste
Inserção do elemento LINE - 1 no gene C-MYC e imunorreatividade das proteinas C-MYC,p53 , p21 e p27 nos diferentes padrões morfológicos do tumor TVT
O tumor venéreo transmissÃvel canino (TVT) afeta a genitália externa de cães pelo transplante natural de células tumorais viáveis. Assim, esta pesquisa teve como objetivo diagnosticar e caracterizar TVT em padrões morfológicos, identificar a inserção do elemento LINE-1 em gene C-MYC, por meio da reação em cadeia da polimerase (PCR), e avaliar a expressão imuno-histoquÃmica do C-MYC, p53, p21 e p27. A relação entre C-MYC e as proteÃnas p53 e a sua interferência na expressão de p21 e p27 foram também estudadas. Para isso, foram utilizadas 20 amostras de ocorrência natural de TVT, submetido a exame citopatológico, histopatológica e imuno-histoquÃmica e ao diagnóstico molecular de neoplasia. A expressão aumentada do tecido e a correlação entre a C-MYC e as proteÃnas p53, p21 e p27 indicam redução e/ou perda de funcionalidade na TVT em seu microambiente, com consequente supressão apoptótica, manutenção do crescimento celular e progressão da neoplasia.The canine transmissible venereal tumor (TVT) affects the external genitalia of dogs by the natural transplant of viable tumor cells. Thus, this research aimed to diagnose and characterize TVT morphological patterns, identify the insertion of the LINE-1 element in C-MYC gene, by means of the polymerase chain reaction (PCR), and evaluate the immunohistochemical expression of C-MYC, p53, p21 and p27 proteins. The relationship between C-MYC and p53 proteins and their interference on the expression of p21 and p27 were also studied. For that, 20 samples of naturally occurring TVT were used, subjected to cytopathological, histopathological and immunohistochemical analysis, and to molecular diagnosis of neoplasia. The increased tissue expression and the correlation among C-MYC, p53, p21 and p27 proteins indicate reduction and/or loss of their functionality in the TVT microenvironment, with consequent apoptotic suppression, maintenance of cell growth and progression of neoplasia
Interference of partial visual analysis of root filling quality and apical status on retreatment decisions
OBJECTIVE: The presence of periapical radiolucency has been used as a criterion for endodontic treatment failure. However, in addition to the inherent limitations of radiographic examinations, radiographic interpretations are extremely subjective. Thus, this study investigated the effect of partial analysis of root filling quality and periapical status on retreatment decisions by general dentists. MATERIAL AND METHODS: Twelve digitalized periapical radiographs were analyzed by 10 observers. The study was conducted at three time points at 1-week intervals. Radiographs edited with the Adobe Photoshop CS4 software were analyzed at three time points: first, only root filling quality was analyzed; second, only the periapical areas of the teeth under study were visualized; finally, observers analyzed the unedited radiographic image. Spearman's coefficient was used to analyze the correlations between the scores assigned when the periapical area was not visible and when the unedited radiograph was analyzed, as well as between the scores assigned when root fillings where not visible and when the unedited radiograph was analyzed. Sensitivity, specificity, positive and negative predictive values between partial images and unedited radiographs were also used to analyze retreatment decisions. The level of significance was set at 5%. RESULTS: The visualization of the root filling on the unedited radiograph affected the interpretation of the periapical status and the technical quality of the fillings has a greater influence on the general dentist's decision to prescribe endodontic retreatment than the periapical condition. CONCLUSION: In order to make endodontic diagnosis, radiographic interpretation process should not only emphasize technical aspects, but also consider biological factors
The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment
Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m(7)G) cap and a poly(A) tail at their 5' and 3' extremities, respectively. The hydrolysis of the m(7)G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7 complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein partners
Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads
The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits
- …