372 research outputs found

    The flood event that affected Badajoz in November 1997

    No full text
    International audienceThe flooding episode of November 1997 in Badajoz was one of the most dramatic catastrophes in Spain: as a result, there were 21 fatalities and huge financial damages. The main purpose of this work is to assess the prevailing synoptic conditions as well as detailing the mesoscale effects by means of moisture sources and dynamic and thermodynamic instability analysis involved in the November 1997 Spanish severe weather episode. In order to achieve the above, this flood event is described in terms of moisture content evolution by means of individual particle simulation along 3-day back-trajectories. A Lagrangian model is applied in order to characterize the atmospheric particles involved in the focused case (localization, height and specific humidity) which give rise to sudden precipitation stream. Geopotential height and temperature fields were used to describe the synoptic situation. Thermodynamic indices, such as CAPE, SWEAT and KI, and dynamic parameters like potential vorticity anomaly at 330 K isentropic surface and Q vector divergence were also calculated in order to complete the analysis and to give a thorough weather frame taking into account the atmospheric instability. The results of this work suggest this flood event was due mainly to strong dynamic instability along with large amounts of moisture advected by a trough, while the thermodynamic instability played a secondary role. Finally, a new methodology based on a technique proposed by Tremblay (2005) has been developed in order to separate the precipitation into stratiform and convective components. It is evident that the event was associated with a predominant convective regime

    Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications

    Get PDF
    The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gula of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluids and melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% Hill explain 100-500 ohm•m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at beeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites

    Instability and its relation to precipitation over the Eastern Iberian Peninsula

    Get PDF
    International audienceSynoptic situations producing rainfall at four rawinsonde observatories at eastern Spain are classified as stratiform or convective depending on dynamic and thermodynamic instability indices. Two daily radiosonde and daily-accumulated precipitation data from four observatories in Eastern Spain are used: Madrid-Barajas (MB), Murcia (MU), Palma de Mallorca (PA) and Zaragoza (ZA). We calculated two thermodynamic instability indices from radiosonde data: CAPE and LI. Likewise, from ERA40 reanalysis data we have calculated the Q vector divergence over the Iberian Peninsula and Balearic Islands, as a parameter describing dynamical instability. Synoptic situations producing rainfall were classified as convective or stratiform, satisfying a criterion based on the values of dynamic and thermodynamic indices at each observatory. It is observed that the number of days with stratiform precipitation related to the total number of precipitation days follows a consistent annual pattern

    Time-varying effective EEG source connectivity: the optimization of model parameters*

    Get PDF
    Adaptive estimation methods based on general Kalman filter are powerful tools to investigate brain networks dynamics given the non-stationary nature of neural signals. These methods rely on two parameters, the model order p and adaptation constant c, which determine the resolution and smoothness of the time-varying multivariate autoregressive estimates. A sub-optimal filtering may present consistent biases in the frequency domain and temporal distortions, leading to fallacious interpretations. Thus, the performance of these methods heavily depends on the accurate choice of these two parameters in the filter design. In this work, we sought to define an objective criterion for the optimal choice of these parameters. Since residual- and information-based criteria are not guaranteed to reach an absolute minimum, we propose to study the partial derivatives of these functions to guide the choice of p and c. To validate the performance of our method, we used a dataset of human visual evoked potentials during face perception where the generation and propagation of information in the brain is well understood and a set of simulated data where the ground truth is available

    Three-Dimensional Magnetotelluric Characterization of the Travale Geothermal Field (Italy)

    Get PDF
    The geoelectrical features of the Travale geothermal field (Italy), one of the most productive geothermal fields in the world, have been investigated by means of three-dimensional (3D) magnetotelluric (MT) data inversion. This study presents the first resistivity model of the Travale geothermal field derived from derivative-based 3D MT inversion. We analyzed MT data that have been acquired in Travale over the past decades in order to determine its geoelectrical dimensionality, directionality, and phase tensor properties. We selected data from 51 MT sites for 3D inversion. We carried out a number of 3D MT inversion tests by changing the type of data to be inverted, the inclusion of static-shift correction at some sites where new time-domain electromagnetic soundings (TDEM) were acquired, the grid rotation, as well as the starting model in order to assess the connection between the inversion model and the geology. The final 3D model herein presents deep elongated resistive bodies between the depths of 1.5 and 8 km. They are transverse to the Apennine structures and suggest a correlation with the strike-slip tectonics. Comparison with a seismic velocity model and well log data suggests a highly-fractured volume of rocks with vapor-dominated circulation. The outcome of this study provides new insights into the complex geothermal system of Travale

    The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?

    Get PDF
    This work seeks to understand the kinetics of O2 and SO2 consumption of air-saturated red wine as a function of its chemical composition, and to describe the chemical changes suffered during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster with higher copper and epigallocatechin contents and with higher absorbance at 620 nm and slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO2 is poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem to be consumed instead. A low SO2 consumption is favoured by low levels of SO2, by a low availability of free SO2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO2 efficiently consume more epigallocatechin, prodelphinidins and procyanidins

    Magnetotelluric Characterization of the Alhama de Murcia Fault (Eastern Betics) - Preliminary Results

    Get PDF
    The Lorca Earthquake (11/5/2011, Mw 5.2) stands as the most destructive in Spain over the last 50 years. It was interpreted as having occurred in an intersegment zone of the strike-slip Alhama de Murcia Fault (AMF). Within the research project “Intergeosima”, a multi parametric characterization and monitoring of the fault structure is ongoing, with the aim of developing a future Near Fault Observatory (NFO) to improve the understanding of the seismic behaviour of the fault in the short and medium term. In this work we present the preliminary results of a magnetotelluric (MT) survey carried out along the rambla de la Torrecilla (SW of Lorca). A more resistivity area might correspond to the Quaternary units, whereas the conductive areas might delineate the extent of the fault gauge materials. Further analysis and inversion of the data are necessary to obtain a more detailed picture of the extension and geometry below the fault zone

    Architectural characterization of a delta-front reservoir analogue combining Ground Penetrating Radar and Electrical Resistivity Tomography : Roda Sandstone (Lower Eocene, Graus-Tremp basin, Spain)

    Get PDF
    Three-dimensional reconstruction of reservoir analogues can be improved combining data from different geophysical methods. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) data are valuable tools, since they provide subsurface information from internal architecture and facies distribution of sedimentary rock bodies, enabling the upgrading of depositional models and heterogeneity reconstruction. The Lower Eocene Roda Sandstone is a well-known deltaic complex widely studied as a reservoir analogue that displays a series of sandstone wedges with a general NE to SW progradational trend. To provide a better understanding of internal heterogeneity of a 10m-thick progradational delta-front sandstone unit, 3D GPR data were acquired. In addition, common midpoints (CMP) to measure the sandstone subsoil velocity, test profiles with different frequency antennas (25, 50 and 100MHz) and topographic data for subsequent correction in the geophysical data were also obtained. Three ERT profiles were also acquired to further constrain GPR analysis. These geophysical results illustrate the geometry of reservoir analogue heterogeneities both depositional and diagenetic in nature, improving and complementing previous outcrop-derived data. GPR interpretation using radar stratigraphy principles and attributes analysis provided: 1) tridimensional geometry of major stratigraphic surfaces that define four units in the GPR Prism, 2) image the internal architecture of the units and their statistical study of azimuth and dips, useful for a quick determination of paleocurrent directions. These results were used to define the depositional architecture of the progradational sandbody that shows an arrangement in very-high-frequency sequences characterized by clockwise paleocurrent variations and decrease of the sedimentary flow, similar to those observed at a greater scale in the same system. This high-frequency sequential arrangement has been attributed to the autocyclic dynamics of a supply-dominated delta-front where fluvial and tidal currents are in competition. The resistivity models enhanced the viewing of reservoir quality associated with cement distribution caused by depositional and early diagenetic processes related to the development of transgressive and regressive systems tracts in high-frequency sequences
    corecore