6 research outputs found

    Combined sticking: a new approach for finite-amplitude Coulomb frictional contact

    Get PDF
    Engineering-level accuracy of discretization methods for frictional contact originates from precise representation of discontinuous frictional and normal interaction laws and precise discrete contact techniques. In terms of discontinuous behavior in the quasi-static case, two themes are of concern: the normal interaction (i.e. impact) and the jumps in tangential directions arising from high frictional values. In terms of normal behavior, we use a smoothed complementarity relation. For the tangential behavior, we propose a simple and effective algorithm, which is based a stick predictor followed by corrections to the tangential velocity. This allows problems with impact and stick-slip behavior to be solved with an implicit code based on Newton–Raphson iterations. Three worked examples are shown with comparisons with published results. An extension to node-to-face form in 3D is also presented

    An alternative formulation for quasi-static frictional and cohesive contact problems

    No full text
    It is known by Engineering practitioners that quasi-static contact problems with friction and cohesive laws often present convergence difficulties in Newton iteration. These are commonly attributed to the non-smoothness of the equilibrium system. However, non-uniqueness of solutions is often an obstacle for convergence. We discuss these condi- tions in detail and present a general algorithm for 3D which is shown to have quadratic convergence in the Newton–Raphson iteration even for parts of the domain where multiple solutions exist. Chen–Mangasarian replacement functions remove the non-smoothness corresponding to both the stick- slip and normal complementarity conditions. Contrasting with Augmented Lagrangian methods, second-order updat- ing is performed for all degrees-of-freedom. Stick condi- tion is automatically selected by the algorithm for regions with multiple solutions. The resulting Jacobian determinant is independent of the friction coefficient, at the expense of an increased number of nodal degrees-of-freedom. Aspects such as a dedicated pivoting for constrained problems are also of crucial importance for a successful solution finding. The resulting 3D mixed formulation, with 7 degrees-of-freedom in each node (displacement components, friction multiplier, friction force components and normal force) is tested with representative numerical examples (both contact with fric- tion and cohesive force), which show remarkable robustness and generality

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore