124 research outputs found

    Different expressions of AQP1, AQP4, eNOS, and VEGF proteins in ischemic versus non-ischemic cerebropathy in rats: potential roles of AQP1 and eNOS in hydrocephalic and vasogenic edema formation

    Get PDF
    In this study, expressions of aquaporin (AQP) 1, AQP4, endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor in blood-cerebrospinal fluid (CSF) barrier and blood-brain barrier (BBB) are examined in rat choroid plexus and peri-infarcted hippocampal formation (HF) following systemic hyponatremia (SH) and permanent middle cerebral artery occlusion (pMCAO). These events are thought to cause the development of hydrocephalic and vasogenic edemas. The importance of CSF overproduction and intact blood-CSF barrier during hydrocephalic edema formation is demonstrated by the high expression of AQP1 (329.86±10.2%, n=4 , P<0.01) and trapped plasma immunoglobulin G (IgG) in choroid plexus epithelium after 24 hours of SH. However, the increased eNOS expression in peri-infarcted HF (130±3%, n=4, P<0.01) and extravasation of plasma IgG into the extravascular compartment after 24 hours of pMCAO suggest that increased microvascular permeability, probably due to elevated levels of nitric oxide, leads to development of vasogenic brain edema via BBB breakdown. Based on these findings, the authors suggest that modulation of different protein expression, dependent on the type of brain edema, is required for primary (pMCAO) and secondary (SH) brain injuries to attenuate brain edema and neuronal degeneration

    RETINAL BLOOD FLOW CORRELATES TO AQUEOUS VASCULAR ENDOTHELIAL GROWTH FACTOR IN CENTRAL RETINAL VEIN OCCLUSION

    Get PDF
    Purpose: As laser speckle flowgraphy can measure blood flow distribution in the ocular fundus, the authors analyzed the relationship between retinal blood flow and aqueous vascular endothelial growth factor (VEGF) concentration in central retinal vein occlusion. Methods: This prospective observational study examined 45 eyes of 45 patients with central retinal vein occlusion before treatment. Blood flow in large vessels around and at the optic disk, aqueous VEGF concentration, and arteriovenous passage time were examined. Blood flow was evaluated as mean blur rate by laser speckle flowgraphy. Results: Fluorescein angiography found 20 ischemic and 25 nonischemic type eyes. Aqueous VEGF concentration in the ischemic type was significantly higher than that in the nonischemic type (P = 0.01). Arteriovenous passage time was significantly correlated to the logarithm of the aqueous VEGF concentration (P = 0.0001). Mean blur rate of the affected eye/ mean blur rate of the unaffected eye of the ischemic type was significantly lower than the nonischemic type (P = 0.039). Additionally, mean blur rate was significantly correlated both to the logarithm of the aqueous VEGF concentration (P , 0.0001) and to the arteriovenous passage time (P = 0.0001). Conclusion: Laser speckle flowgraphy may be useful for predicting aqueous VEGF concentration and severity of central retinal vein occlusion

    A Systematic Meta-Analysis of Genetic Association Studies for Diabetic Retinopathy

    Get PDF
    OBJECTIVE: Diabetic retinopathy is a sight-threatening microvascular complication of diabetes with a complex multifactorial pathogenesis. A systematic meta-analysis was undertaken to collectively assess genetic studies and determine which previously investigated polymorphisms are associated with diabetic retinopathy. RESEARCH DESIGN AND METHODS: All studies investigating the association of genetic variants with the development of diabetic retinopathy were identified in PubMed and ISI Web of Knowledge. Crude odds ratios (ORs) and 95% CIs were calculated for single nucleotide polymorphisms and microsatellite markers previously investigated in at least two published studies. RESULTS: Twenty genes and 34 variants have previously been studied in multiple cohorts. The aldose reductase (AKR1B1) gene was found to have the largest number of polymorphisms significantly associated with diabetic retinopathy. The z-2 microsatellite was found to confer risk (OR 2.33 [95% CI 1.49-3.64], P = 2 x 10(-4)) in type 1 and type 2 diabetes and z+2 to confer protection (0.58 [0.36-0.93], P = 0.02) against diabetic retinopathy in type 2 diabetes regardless of ethnicity. The T allele of the AKR1B1 promoter rs759853 variant is also significantly protective against diabetic retinopathy in type 1 diabetes (0.5 [0.35-0.71], P = 1.00 x 10(-4)), regardless of ethnicity. These associations were also found in the white population alone (P < 0.05). Polymorphisms in NOS3, VEGF, ITGA2, and ICAM1 are also associated with diabetic retinopathy after meta-analysis. CONCLUSIONS: Variations within the AKR1B1 gene are highly significantly associated with diabetic retinopathy development irrespective of ethnicity. Identification of genetic risk factors in diabetic retinopathy will assist in further understanding of this complex and debilitating diabetes complication

    Vascular endothelial growth factor-A 165 b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina

    Get PDF
    Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR
    corecore