14 research outputs found

    High prevalence of obesity, central obesity and abnormal glucose tolerance in the middle-aged Finnish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a worldwide increase in the prevalence of obesity and disturbances in glucose metabolism. The aim of this study was to assess the current prevalence of obesity, central obesity and abnormal glucose tolerance in Finnish population, and to investigate the associations between body mass index (BMI), waist circumference and abnormal glucose tolerance.</p> <p>Methods</p> <p>A cross-sectional population-based survey was conducted in Finland during October 2004 and January 2005. A total of 4500 randomly selected individuals aged 45–74 years were invited to a health examination that included an oral glucose tolerance test. The participation rate was 62% in men and 67% in women.</p> <p>Results</p> <p>The prevalence of obesity was 23.5% (95% Confidence Interval (CI) 21.1–25.9) in men, and 28.0% (95% CI 25.5–30.5) in women. The overall prevalence of abnormal glucose tolerance (including type 2 diabetes, impaired glucose tolerance, or impaired fasting glucose) was 42.0% (95% CI 39.2–44.8) in men and 33.4% (95% CI 30.9–36.0) in women. The prevalence of previously unknown, screen-detected type 2 diabetes was 9.3% (95% CI 7.7–11.0) in men and 7.3% (95% CI 5.9–8.7) in women. Central obesity was associated with abnormal glucose tolerance within each of the three BMI categories normal (< 25 kg/m<sup>2</sup>), overweight (25–29 kg/m<sup>2</sup>), and obese (≥ 30 kg/m<sup>2</sup>).</p> <p>Conclusion</p> <p>In a population-based random sample of Finnish population, prevalences of obesity, central obesity and abnormal glucose tolerance were found to be high. A remarkably high number of previously undetected cases of type 2 diabetes was detected. Waist circumference is a predictor of abnormal glucose tolerance in all categories of obesity.</p

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    Genome-wide physical activity interactions in adiposity:a meta-analysis of 200,452 adults

    No full text
    Abstract Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery

    Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

    No full text

    Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    Get PDF
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity

    Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults

    No full text
    corecore