2,982 research outputs found
Stratification and Isotope Separation in CP Stars
We investigate the elemental and isotopic stratification in the atmospheres
of selected chemically peculiar (CP) stars of the upper main sequence.
Reconfiguration of the UVES spectrograph in 2004 has made it possible to
examine all three lines of the Ca II infrared triplet. Much of the material
analyzed was obtained in 2008.
We support the claim of Ryabchikova, Kochukhov & Bagnulo (RKB) that the
calcium isotopes have distinct stratification profiles for the stars 10 Aql, HR
1217, and HD 122970, with the heavy isotope concentrated toward the higher
layers. Better observations are needed to learn the extent to which Ca-40
dominates in the deepest layers of all or most CP stars that show the presence
of Ca-48. There is little evidence for Ca-40 in the spectra of some HgMn stars,
and the infrared triplet in the magnetic star HD 101065 is well fit by pure
Ca-48. In HR 5623 (HD 133792) and HD 217522 it is likely that the heavy isotope
dominates, though models are possible where this is not the case.
While elemental stratification is surely needed in many cases, we point out
the importance of including adjustments in the assumed Teff and log(g) values,
in attempts to model stratification. We recommend emphasis on profiles of the
strongest lines, where the influence of stratification is most evident.
Isotopic mixtures, involving the 4 stable calcium nuclides with masses
between 40 and 48 are plausible, but are not emphasized.Comment: 16 Pages, 20 Figures, 10 Tables. Accepted for publication in Monthly
Notices of the RA
Spectroscopic Sensitivity
We describe the overall performance of the STIS CCD after HST Servicing Mission #4 and the associated updates to calibration reference files. Most aspects of CCD performance are found to be fairly consistent with extrapolations of the trends seen prior to the failure of STIS in August 2004. The CCD gain value for the CCDGAIN = 4 setting has been redetermined using net count ratios of standard star spectra taken in the CCDGAIN = 1 and CCDGAIN = 4 settings, resulting in a gain value of 4.016 ± 0.003 e − /DN, which is 0.5% lower than the value used for the calibration of archival STIS CCD data taken before August 2004. Finally, we identify two independent indications of a temperature dependence of the Charge Transfer Efficiency (CTE). However, more calibration data are needed to verify the significance of this effect and, if verified, to calibrate it as a function of CCD housing temperature (as a proxy for CCD chip temperature). This option will be reassessed later during the Cycle 17 calibration program.
Detailed Analysis of Nearby Bulgelike Dwarf Stars II. Lithium Abundances
Li abundances are derived for a sample of bulgelike stars with isochronal
ages of 10-11 Gyr. These stars have orbits with pericentric distances, Rp, as
small as 2-3 kpc and Zmax < 1 kpc. The sample comprises G and K dwarf stars in
the metallicity range -0.80<[Fe/H]< +0.40. Few data of Li abundances in old
turn-off stars (> 4.5 Gyr) within the present metallicity range are available.
M67 (4.7 Gyr) and NGC 188 (6 Gyr) are the oldest studied metal-rich open
clusters with late-type stars. Li abundances have also been studied for few
samples of old metal-rich field stars. In the present work a high dispersion in
Li abundances is found for bulgelike stars for all the metallicity range,
comparable with values in M67. The role of metallicity and age on a Li
depletion pattern is discussed. The possible connection between Li depletion
and oxygen abundance due to atmospheric opacity effects is investigated.Comment: 9 pages, 7 figure
K-shell photoionization of ground-state Li-like boron ions [B]: Experiment and Theory
Absolute cross sections for the K-shell photoionization of ground-state
Li-like boron [B(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source synchrotron
radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the
[1s(2s\,2p)P]P and [1s(2s\,2p)P] P
resonances, respectively, were investigated using resolving powers of up to
17\,600. The energy range of the experiments was extended to about 238.2 eV
yielding energies of the most prominent
[1s(2\,n)]P resonances with an absolute accuracy
of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)P]
P and [1s(2s\,2p)P] P resonances were measured
to be meV and meV, respectively, which compare
favourably with theoretical results of 4.40 meV and 30.53 meV determined using
an intermediate coupling R-matrix method.Comment: 6 figures and 2 table
Limits on the Optical Brightness of the Epsilon Eridani Dust Ring
The STIS/CCD camera on the {\em Hubble Space Telescope (HST)} was used to
take deep optical images near the K2V main-sequence star Eridani in
an attempt to find an optical counterpart of the dust ring previously imaged by
sub-mm observations. Upper limits for the optical brightness of the dust ring
are determined and discussed in the context of the scattered starlight expected
from plausible dust models. We find that, even if the dust is smoothly
distributed in symmetrical rings, the optical surface brightness of the dust,
as measured with the {\em HST}/STIS CCD clear aperture at 55 AU from the star,
cannot be brighter than about 25 STMAG/". This upper limit excludes some
solid grain models for the dust ring that can fit the IR and sub-mm data.
Magnitudes and positions for 59 discrete objects between 12.5" to 58"
from Eri are reported. Most if not all of these objects are likely
to be background stars and galaxies.Comment: Revision corrects author lis
Iron abundances from optical Fe III absorption lines in B-type stellar spectra
The role of optical Fe III absorption lines in B-type stars as iron abundance
diagnostics is considered. To date, ultraviolet Fe lines have been widely used
in B-type stars, although line blending can severely hinder their diagnostic
power. Using optical spectra, covering a wavelength range ~ 3560 - 9200 A, a
sample of Galactic B-type main-sequence and supergiant stars of spectral types
B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of
supergiants, and those predicted from the model atmosphere codes TLUSTY
(plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and
CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In
addition, a sample of main-sequence and supergiant objects, observed with
FEROS, reveal LTE abundance estimates consistent with the Galactic environment
and previous optical studies. Based on the present study, we list a number of
Fe III transitions which we recommend for estimating the iron abundance from
early B-type stellar spectra.Comment: 3 figures and 8 tables. Table 3 is to be published online only
(included here on last page). Accepted for publication in MNRA
Recommended from our members
Observed OH and HO_2 in the upper troposphere suggest a major source from convective injection of peroxides
ER-2 aircraft observations of OH and HO_2 concentrations in the upper troposphere during the NASA/STRAT campaign are interpreted using a photochemical model constrained by local observations of O_3, H_2O, NO, CO, hydrocarbons, albedo and overhead ozone column. We find that the reaction Q(^(1)D) + H_2O is minor compared to acetone photolysis as a primary source of HO_x (= OH + peroxy radicals) in the upper troposphere. Calculations using a diel steady state model agree with observed HO_x concentrations in the lower stratosphere and, for some flights, in the upper troposphere. However, for other flights in the upper troposphere, the steady state model underestimates observations by a factor of 2 or more. These model underestimates are found to be related to a recent (< 1 week) convective origin of the air. By conducting time-dependent model calculations along air trajectories determined for the STRAT flights, we show that convective injection of CH_3OOH and H_2O_2 from the boundary layer to the upper troposphere could resolve the discrepancy. These injections of HO_x reservoirs cause large HO_x increases in the tropical upper troposphere for over a week downwind of the convective activity. We propose that this mechanism provides a major source of HO_x in the upper troposphere. Simultaneous measurements of peroxides, formaldehyde and acetone along with OH and HO_2 are needed to test our hypothesis
Transport Out of the Antarctic Polar Vortex from a Three-dimensional Transport Model
[1] A three-dimensional chemical transport model is utilized to study the transport out of the Antarctic polar vortex during the southern hemisphere spring. On average, over five consecutive years between 1993 and 1997, horizontal transport out of the vortex into the midlatitude stratosphere is smaller than vertical transport into the troposphere. However, there is significant interannual variability in the magnitude of mass exchange, which is related to year-to-year fluctuations in planetary wave activity. In 1994 the net loss of the vortex tracer mass in September is similar to that in October. However, the relative mass flux entering the midlatitude stratosphere and the troposphere differ between the two months. The ratio of horizontal transport out of the vortex to vertical transport into the troposphere is about 3:7 in September and 5:5 in October, indicating the higher permeability of the vortex in October compared to September. The September mass flux into the troposphere is larger than in October, consistent with the fact that stronger diabatic cooling occurs in September than October over Antarctica. The estimated ozone change at southern midlatitudes due to the intrusion of ozone-depleted air from high latitudes during September–October 1994 is about −0.44% per decade, which could contribute up to 10% of observed ozone decline at southern midlatitudes in spring. This amount is an underestimate of the dilution effect from high latitudes during the spring season, as it does not include the vortex breakup in late spring
A Submillimetre Search for Cold Extended Debris Disks in the Beta Pictoris Moving Group
The Beta Pictoris Moving Group is a nearby stellar association of young
(12Myr) co-moving stars including the classical debris disk star beta Pictoris.
Due to their proximity and youth they are excellent targets when searching for
submillimetre emission from cold, extended, dust components produced by
collisions in Kuiper-Belt-like disks. They also allow an age independent study
of debris disk properties as a function of other stellar parameters. We
observed 7 infrared-excess stars in the Beta Pictoris Moving Group with the
LABOCA bolometer array, operating at a central wavelength of 870 micron at the
12-m submillimetre telescope APEX. The main emission at these wavelengths comes
from large, cold dust grains, which constitute the main part of the total dust
mass, and hence, for an optically thin case, make better estimates on the total
dust mass than earlier infrared observations. Fitting the spectral energy
distribution with combined optical and infrared photometry gives information on
the temperature and radial extent of the disk. From our sample, beta Pic,
HD181327, and HD172555 were detected with at least 3-sigma certainty, while all
others are below 2-sigma and considered non-detections. The image of beta Pic
shows an offset flux density peak located near the south-west extension of the
disk, similar to the one previously found by SCUBA at the JCMT. We present SED
fits for detected sources and give an upper limit on the dust mass for
undetected ones. We find a mean fractional dust luminosity f_dust=11x10^{-4} at
t=12Myr, which together with recent data at 100Myr suggests an f_dust propto
t^{-alpha} decline of the emitting dust, with alpha > 0.8.Comment: 11 pages, 3 figures, 3 tables; accepted for publication in Astronomy
& Astrophysic
HD 65949: Rosetta Stone or Red Herring
HD 65949 is a late B star with exceptionally strong Hg II at 3984[A], but it
is not a typical HgMn star. The Re II spectrum is of extraordinary strength.
Abundances, or upper limits are derived here for 58 elements based on a model
with Teff = 13100K, and log(g) = 4.0. Even-Z elements through nickel show minor
deviations from solar abundances. Anomalies among the odd-Z elements through
copper are mostly small. Beyond the iron peak, a huge scatter is found. The
abundance pattern of the heaviest elements resembles the N=126 r-process peak
of solar material, though not in detail. We find a significant correlation of
the abundance excesses with second ionization potentials for elements with Z >
30. This indicates the relevance of photospheric or near-photospheric
processes. We explore a model with mass accretion of exotic material followed
by the more commonly accepted differentiation by diffusion. That model leads to
a number of predictions which challenge future work.
Likely primary and secondary masses are near 3.3 and 1.6 M(solar), with a
separation of ca. 0.25 AU. New atomic structure calculations are presented in
two appendices.Comment: Accepted by MNRAS: 16 pages, 5 figure
- …
