21 research outputs found

    DRUG DELIVERY STUDY OF SINGLE-WALL CARBON NANOTUBES COVALENT FUNCTIONALIZED WITH CISPLATIN

    Get PDF
    Carbon nanotubes are widely studied components for drug delivery systems due to their high surface area and low chemical reactivity. The research presented in this paper deals with the synthesis of drug delivery systems based on single walled carbon nanotubes (SWCNTs) and the well-known cancer treatment drug Cisplatin. The new nanomaterials obtained through covalent bonding between carboxyl groups from the SWCNTs surface and amino groups from the Cisplatin structure were characterized from structural point of view. To evaluate the content of drug released the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was employed. The releasing profile shows a slow rate in the beginning followed by a spectacular increase after 180 minutes which means that this type of system could be used for prolonged release

    Biochar boosts tropical but not temperate crop yields

    Get PDF
    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services

    Assessing ecotoxicity of an innovative bio-based mulch film: a multi-environmental and multi-bioassay approach

    Get PDF
    Among the highly diverse range of biobased polymers, polylactic acid (PLA) received vast attention in recent years due to its versatility for different applications and being the first commercially used polymer produced from renewable sources. Production and application of bio-based, biodegradable plastics will have one of the most crucial roles in tackling worldwide plastic pollution. Methods: This study is based on integrative ecotoxicological assessment of an innovative PLA-based agricultural mulch film (BPE-AMF-PLA), developed under the H2020 EU project “BIO-PLASTICS EUROPE”, towards organisms from different environmental compartments (soil, fresh water and marine) and from different trophic levels. Such comprehensive evaluation has an overarching goal to promote environmentally safe and sustainable use of these PLA-based plastics for agricultural and other potential applications. Results: Low-to-no phytotoxicity was obtained in both single-species standardized bioassays, and in a multi-species microcosms experiment. Earthworm reproduction was negatively affected at the lowest test concentration of 0.1% w/w of PLA-based plastic particles. For freshwater Daphnia, reproduction was found a sensitive endpoint, upon exposure to the leachates of the PLA-based plastic. However, the reported toxicity seemed to be caused by the presence of 2-methylnaphthalene, which can be avoided in the production process. As for the marine organisms, algae growth was inhibited with a LOEC = 25 g L−1, whereas test with brine shrimp only revealed stimulation of lipase upon digestion of micro-sized PLA-based plastics. Marine lugworm ingested pristine and UV pre-treated micro-sized plastics, yet without impact either on biological activity, or on the health of the test individuals. Discussion: The approach used in the present work will contribute to product development, environmental safety and sustainable applications of the PLA-based mulch film BPE-AMF-PLA, in the scope of project BIO-PLASTICS EUROPE. Furthermore, the tools and results obtained in this work are a relevant contribution in the framework development for additional support in the certification of the bio-based polymers, being aligned with European zero waste and non-toxicity strategies, certification, and regulations

    Biochars in soils : towards the required level of scientific understanding

    Get PDF
    Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios

    Aflatoxin B1 accumulation in Tenebrio molitor: a preliminary assessment

    No full text
    With the population growth rate, there are some concerns that food production will not be able to keep up with this growth. Edible insects seem to present a sustainable solution. Farming these insects presents an opportunity to drain the production of the by-products by reusing them as bio-feedstocks and reintroducing these components into the food value chain. However, these products can present several contaminations, including mycotoxins, which can be accumulated in insects after exposure to the contaminant, and be detected at the end of the food chain. The ENTOSAFE project aims to address these concerns and evaluate the potential risk for the consumer. The principal aim of this study was to evaluate the mycotoxin aflatoxin B1 (AFB1) accumulation in Tenebrio molitor (yellow Mealworm, YMW) exposed to a spiked AFB1 feed subtract at maximum levels in cereals and products derived from cereals (2 ”g/kg) and ten times higher (20 ”g/kg). AFB1 contents were quantified in both feed substrate and T. molitor samples, before and after a 14-days of exposure and mycotoxins (aflatoxins and ochratoxin A, OTA), detected by HPLC-FD detection. Results concerning non-contaminated feed substrate revealed absence of AFB1 and presence of OTA, the latter (0,8 ”g/kg) presenting values below the legislated value of 3 ”g/kg, for cereals and products derived from cereals (European Commission, 2023). AFB1 spiked feed substrates revealed values slightly higher (4 and 23 ”g/kg) than the theoretical contamination levels of 2 and 20 ”g/kg. OTA values remain close to the previously reported. No changes occurred in contamination levels at beginning and 14-days AFB1 exposure assays. Results concerning T. molitor larvae, revealed absence of OTA along exposure assays and different AFB1 contamination levels. AFB1 contents in low (0.011 ”g/kg) and high (0.022 ”g/kg) AFB1 contamination levels were close, and below the 2 ”g/kg legislated level for cereals and products derived from cereals (European Commission, 2023), after the 14-days exposure. The reported results are preliminary, so several aspects need to be improved as mycotoxin analytical method validation, mycotoxin contamination procedure and a higher number of samples to get representative results on AFB1 accumulation in insect larvae.This study was supported by the project ENTOSAFE (PTDC/CTA-AMB/0730/2021), financially supported by national funds (OE), through FCT/MCTES, as well as for financial support to CESAM by FCT/MCTES (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020), through national funds. D. Cardoso was hired under the Scientific Employment Stimulus – Individual Call (CEECIND/01190/2018).info:eu-repo/semantics/publishedVersio

    Water-extractable priority contaminants in LUFA 2.2 soil: back to basics, contextualisation and implications for use as natural standard soil

    No full text
    The natural LUFA 2.2 standard soil has been extensively used in hazard assessment of soil contaminants, combining representation with ecological relevance for accurate risk evaluation. This study revisited the water-extractable fraction of LUFA 2.2 soil, through consecutive soil wet-dry cycles and discusses implications of use as standard substrate in derivation of ecotoxicological data and toxicity thresholds. Potentially bioavailable contents of metals (177.9-888.7 ”g/l) and the 16 polycyclic aromatic hydrocarbons (PAHs; 0.064-0.073 ”g/l) were dependent on the number of soil wetting-drying cycles applied. Such contents were screened based on current EU guidelines for surface waters and reported toxicological benchmarks for aquatic organisms. Aqueous concentrations generally fit within recommended Environmental Quality Standards (EQS), except for Hg (0.13-0.22 ”g/l; >Maximum Allowable Concentration-MAC-of 0.07 ”g/l) and for the sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene (0.005 ”g/l; >double the Annual Average of 0.002 ”g/l). Further, aqueous As, Zn, Cd, Ni and Cr concentrations exceeded 'lower benchmark' values for aquatic organisms, possibly reflecting an inadequate derivation for ecotoxicological data. In turn, PAHs in LUFA 2.2 soil aqueous extracts, whilst individually, are not likely to constitute a hazard to test biota exposed to its aqueous fractions. This study urges for potentially bioavailable fractions of reference and standard natural soils to be adequately characterized and addressed as part of the research aim, experimental approach and design, as well as the expected scope of the outcomes
    corecore