65 research outputs found
Bomb-<sup>14</sup>C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon
The largest terrestrial-to-atmosphere carbon flux is respired CO<sub>2</sub>. However, the partitioning of soil and plant sources, understanding of contributory mechanisms, and their response to climate change are uncertain. A plant removal experiment was established within a peatland located in the UK uplands to quantify respiration derived from recently fixed plant carbon and that derived from decomposition of soil organic matter, using natural abundance <sup>13</sup>C and bomb-<sup>14</sup>C as tracers. Soil and plant respiration sources were found respectively to contribute ~ 36% and between 41-54% of the total ecosystem CO<sub>2</sub> flux. Respired CO<sub>2</sub> produced in the clipped (‘soil’) plots had a mean age of ~ 15 years since fixation from the atmosphere, whereas the <sup>14</sup>C content of ecosystem CO<sub>2</sub> was statistically indistinguishable from the contemporary atmosphere. Results of carbon mass balance modelling showed that, in addition to respiration from bulk soil and plant respired CO<sub>2</sub>, a third, much older source of CO<sub>2</sub> existed. This source, which we suggest is CO<sub>2</sub> derived from the catotelm constituted between ~ 10 and 23% of total ecosystem respiration and had a mean radiocarbon age of between several hundred to ~ 2000 years before present (BP). These findings show that plant-mediated transport of CO<sub>2</sub> produced in the catotelm may form a considerable component of peatland ecosystem respiration. The implication of this discovery is that current assumptions in terrestrial carbon models need to be re-evaluated to consider the climate sensitivity of this third source of peatland CO<sub>2</sub>
COVID-19 and use of non-traditional masks: how do various materials compare in reducing the risk of infection for mask wearers?
Abstract not available
Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl
Biologia reprodutiva de Ipomoea eriocalyx (Convolvulaceae): espécie com distribuição restrita às regiões do leste do Brasil
Symptomatology, pathophysiology, diagnostic work-up, and treatment of Hirschsprung disease in infancy and childhood
IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes.
GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach
Ecological studies on three contrasting Scottish oakwoods I. Site descriptions and small litterfall
- …
