1,715 research outputs found

    Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces

    Get PDF
    Using ab initio path-integral molecular dynamics, we show that water-hydroxyl overlayers on transition metal surfaces exhibit surprisingly pronounced quantum nuclear effects. The metal substrates serve to reduce the classical proton transfer barriers within the overlayers and, in analogy to ice under high pressure, to shorten the corresponding intermolecular hydrogen bonds. Depending on the substrate and the intermolecular separations it imposes, the traditional distinction between covalent and hydrogen bonds is lost partially [e.g., on Pt(111) and Ru(0001)] or almost entirely [e.g., on Ni(111)]. We suggest that these systems provide an excellent platform on which to systematically explore the magnitude of quantum nuclear effects in hydrogen bonds

    Irritable Bowel Syndrome patients exhibit depressive and anxiety scores in the subsyndromal range

    Get PDF
    Irritable bowel syndrome (IBS) patients frequently experience affective disorders and psychiatric outpatients frequently meet criteria for IBS. The exact nature of this co-morbidity is not clear. 34 patients with Rome-II diagnosed IBS were recruited from a Gastroenterology clinic. Patients with social anxiety disorder (10 SSRI-remitted and 7 untreated subjects) were used as a psychiatric comparison, 28 normal subjects from our register were included as a fourth group (Volunteers). Depressive and anxiety symptoms were measured by the Beck Depression Inventory (BDI) and Spielberger Trait Anxiety Inventory (STAI), respectively. Personality traits were measured with the Swedish universities Scales of Personality (SSP). IBS subjects had BDI and STAI scores intermediate between those of volunteers and patients, despite their lack of a co-morbid psychiatric diagnosis. A principle component factor analysis of the SSP dataset corresponded closely to the solution published with other samples. ANOVA revealed significant between-group differences for 7 of the 13 SSP variables

    Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes

    Get PDF
    Nematodes are the most abundant metazoans of deep-sea benthic communities, but knowledge of their distribution is limited relative to larger organisms. Whilst some aspects of nematode processing techniques, such as extraction, have been extensively studied, other key elements have attracted little attention. We compared the effect of (1) mesh size (63, 45, and 32 μm) on estimates of nematode abundance, biomass, and body size, and (2) microscope magnification (50 and 100×) on estimates of nematode abundance at bathyal sites (250-3100 m water depth) on the Challenger Plateau and Chatham Rise, south-west Pacific Ocean. Variation in the effectiveness of these techniques was assessed in relation to nematode body size and environmental parameters (water depth, sediment organic matter content, %silt/clay, and chloroplastic pigments). The 63-μm mesh retained a relatively low proportion of total nematode abundance (mean ±SD = 55 ±9%), but most of nematode biomass (90 ± 4%). The proportion of nematode abundance retained on the 45-μm mesh in surface (0-1 cm) and subsurface (1-5 cm) sediment was significantly correlated (P < 0.01) with %silt/clay (R² = 0.39) and chloroplastic pigments (R² = 0.29), respectively. Variation in median nematode body weight showed similar trends, but relationships between mean nematode body weight and environmental parameters were either relatively weak (subsurface sediment) or not significant (surface sediment). Using a low magnification led to significantly lower (on average by 43%) nematode abundance estimates relative to high magnification (P < 0.001), and the magnitude of this difference was significantly correlated (P < 0.05) with total nematode abundance (R²p = 0.53) and the number of small (≤ 250 μm length) individuals (R²p = 0.05). Our results suggest that organic matter input and sediment characteristics influence the abundance of small nematodes in bathyal communities. The abundance of small individuals can, in turn, influence abundance estimates obtained using different mesh sizes and microscope magnifications

    Oral iron exacerbates colitis and influences the intestinal microbiome

    Get PDF
    Inflammatory bowel disease (IBD) is associated with anaemia and oral iron replacement to correct this can be problematic, intensifying inflammation and tissue damage. The intestinal microbiota also plays a key role in the pathogenesis of IBD, and iron supplementation likely influences gut bacterial diversity in patients with IBD. Here, we assessed the impact of dietary iron, using chow diets containing either 100, 200 or 400 ppm, fed ad libitum to adult female C57BL/6 mice in the presence or absence of colitis induced using dextran sulfate sodium (DSS), on (i) clinical and histological severity of acute DSS-induced colitis, and (ii) faecal microbial diversity, as assessed by sequencing the V4 region of 16S rRNA. Increasing or decreasing dietary iron concentration from the standard 200 ppm exacerbated both clinical and histological severity of DSS-induced colitis. DSS-treated mice provided only half the standard levels of iron ad libitum (i.e. chow containing 100 ppm iron) lost more body weight than those receiving double the amount of standard iron (i.e. 400 ppm); p<0.01. Faecal calprotectin levels were significantly increased in the presence of colitis in those consuming 100 ppm iron at day 8 (5.94-fold) versus day-10 group (4.14-fold) (p<0.05), and for the 400 ppm day-8 group (8.17-fold) versus day-10 group (4.44-fold) (p<0.001). In the presence of colitis, dietary iron at 400 ppm resulted in a significant reduction in faecal abundance of Firmicutes and Bacteroidetes, and increase of Proteobacteria, changes which were not observed with lower dietary intake of iron at 100 ppm. Overall, altering dietary iron intake exacerbated DSS-induced colitis; increasing the iron content of the diet also led to changes in intestinal bacteria diversity and composition after colitis was induced with DSS

    Effect of disorder on the vortex-lattice melting transition

    Full text link
    We use a three dimensional stacked triangular network of Josephson junctions as a model for the study of vortex structure in the mixed state of high Tc superconductors. We show that the addition of disorder destroys the first order melting transition occurring for clean samples. The melting transition splits in two different (continuous) transitions, ocurring at temperatures Ti and Tp (>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp the parallel-to-field superconductivity is lost. These results agree well with recent experiments in YBaCuO.Comment: 4 pages + 2 figure

    High temperature decreases the PIC / POC ratio and increases phosphorus requirements in <i>Coccolithus pelagicus</i> (Haptophyta)

    Get PDF
    Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO<sub>2</sub> into particulate organic carbon through photosynthesis (POC production) and into particulate inorganic carbon through calcification (PIC production). As calcification produces a net release of CO<sub>2</sub>, the ratio of PIC to POC production determines whether coccolithophores act as a source (high PIC / POC) or a sink (low PIC / POC) of atmospheric CO<sub>2</sub>. We studied the effect of phosphorus (P-) limitation and high temperature on the physiology and the PIC / POC ratio of two subspecies of Coccolithus pelagicus. This large and heavily calcified species is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. One of the subspecies was subjected to a 5 °C temperature increase from 10 °C to 15 °C, which did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. This temperature increase reduced the PIC / POC ratio by 40–60%, whereas the PIC / POC ratio did not differ between P-limited and nutrient-replete cultures when the subspecies were grown near their respective isolation temperature. Both P-limitation and elevated temperature significantly increased coccolith malformations. Our results suggest that a temperature increase may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario <i>C. pelagicus</i> may decrease its calcification rate relative to photosynthesis, thus favouring CO<sub>2</sub> sequestration over release. It seems unlikely that P-limitation by itself causes changes in the PIC / POC ratio in this species

    Vortex structure and resistive transitions in high-Tc superconductors

    Full text link
    The nature of the resistive transition for a current applied parallel to the magnetic field in high-Tc materials is investigated by numerical simulation on the three dimensional Josephson junction array model. It is shown by using finite size scaling that for samples with disorder the critical temperature Tp for the c axis resistivity corresponds to a percolation phase transition of vortex lines perpendicularly to the applied field. The value of Tp is higher than the critical temperature for j perpendicular to H, but decreases with the thickness of the sample and with anisotropy. We predict that critical behavior around Tp should reflect in experimentally accessible quantities, as the I-V curves.Comment: 8 pages + 6 figure

    Ultra-low temperature structure determination of a Mn12 single-molecule magnet and the interplay between lattice solvent and structural disorder

    Get PDF
    We have determined the ultra-low temperature crystal structure of the archetypal single-molecule magnet (SMM) [Mn12O12(O2CMe)16(H2O)4]·4H2O·2MeCO2H (1) at 2 K, by using a combination of single-crystal X-ray and single-crystal neutron diffraction. This is the first structural study of any SMM in the same temperature regime where slow magnetic relaxation occurs. We reveal an additional hydrogen bonding interaction between the {Mn12} cluster and its solvent of crystallisation, which shows how the lattice solvent transmits disorder to the acetate ligands in the {Mn12} complex. Unusual quantum properties observed in 1 have long been attributed to disorder. Hence, we studied the desolvation products of 1, in order to understand precisely the influence of lattice solvent on the structure of the cluster. We present two new axially symmetric structures corresponding to different levels of desolvation of 1, [Mn12O12(O2CMe)16(H2O)4]·4H2O (2) and [Mn12O12(O2CMe)16(H2O)4] (3). In 2, removal of acetic acid of crystallisation largely resolves positional disorder in the affected acetate ligands, whereas removal of lattice water molecules further resolves the acetate ligand disorder in 3. Due to the absence of acetic acid of crystallisation, both 2 and 3 have true, unbroken S4 symmetry, showing for the first time that it is possible to prepare fully axial Mn12–acetate analogues from 1, via single-crystal to single-crystal transformations

    Collecting biological material from palliative care patients in the last weeks of life: a feasibility study

    Get PDF
    Objective To assess the feasibility of prospectively collecting biological samples (urine) from palliative care patients in the last weeks of life. Setting A 30-bedded specialist hospice in the North West of England. Participants Participants were adults with a diagnosis of advanced disease and able to provide written informed consent. Method Potential participants were identified by a senior clinician over a 12-week period in 2014. They were then approached by a researcher and invited to participate according to a developed recruitment protocol. Outcomes Feasibility targets included a recruitment rate of 50%, with successful collection of samples from 80% who consented. Results A total of 58 patients were approached and 33 consented (57% recruitment rate). Twenty-five patients (43%) were unable to participate or declined; 10 (17%) became unwell, too fatigued, lost capacity, died or were discharged home; and 15 (26%) refused, usually these patients had distressing pain, low mood or profound fatigue. From the 33 recruited, 20 participants provided 128 separate urine samples, 12 participants did not meet the inclusion criteria at the time of consent and 1 participant was unable to provide a sample. The criterion for a urinary catheter was removed for the latter 6 weeks. The collection rate during the first 6 weeks was 29% and 93% for the latter 6 weeks. Seven people died while the study was ongoing, and another 4 participants died in the following 4 weeks. Conclusions It is possible to recruit and collect multiple biological samples over time from palliative care patients in the last weeks and days of life even if they have lost capacity. Research into the biological changes at the end of life could develop a greater understanding of the biology of the dying process. This may lead to improved prognostication and care of patients towards the end of life
    corecore