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2 Using ab initio path-integral molecular dynamics, we show that water-hydroxyl overlayers on transition

metal surfaces exhibit surprisingly pronounced quantum nuclear effects. The metal substrates serve to

reduce the classical proton transfer barriers within the overlayers and, in analogy to ice under high

pressure, to shorten the corresponding intermolecular hydrogen bonds. Depending on the substrate and the

intermolecular separations it imposes, the traditional distinction between covalent and hydrogen bonds is

lost partially [e.g., on Pt(111) and Ru(0001)] or almost entirely [e.g., on Ni(111)]. We suggest that these

systems provide an excellent platform on which to systematically explore the magnitude of quantum

nuclear effects in hydrogen bonds.

DOI: PACS numbers: 68.43.Bc, 71.15.Pd, 82.45.Jn, 82.65.+r

5 Under ambient conditions, most surfaces are covered in
a film of water [1]. As such, wet surfaces are of pervasive
importance in processes like corrosion, friction, and ice
nucleation. On many surfaces, the first contact layer of
water is not comprised of pure water but instead of a
mixture of water and hydroxyl molecules [1–11]. These
overlayers form because they offer the optimal balance of
hydrogen (H) bonding within the overlayer and bonding to
the surface, and they have now been observed on several
oxide, semiconductor, and metal surfaces.

Water-hydroxyl wetting layers are most well character-
ized on close-packed metal surfaces under ultrahigh vac-
uum (UHV) conditions [1]. The molecules in the overlayer
are typically ‘‘pinned’’ in registry with the substrate, bond-
ing above individual metal atoms in H bonded networks
(see Fig. 1). As a consequence, the distance between
adjacent molecules is dictated by the substrate, being
relatively large on a metal with a large lattice constant

[e.g., �2:83 �A on average on Pt(111)] and much smaller
on a metal with a relatively small lattice constant [e.g.,

�2:50 �A on average on Ni(111)]. It is known from studies
of water in other environments, e.g., certain phases of bulk
ice, that the nature of the shared proton in intermolecular
H bonds varies dramatically over such a large range of O-O
distances. Specifically, under ambient pressures bulk ice is
a conventional molecular crystal, with O-O separations of

�2:8 �A. However, at very high pressure (� 70 GPa), with

O-O separations of �2:3 �A, ice loses its integrity as a
molecular crystal and the protons become delocalized
between the O nuclei (see, e.g., [12–14]).

The correspondence with ice under pressure suggests
that water-hydroxyl overlayers may exhibit pronounced
substrate dependent quantum nuclear effects. Although
this possibility has not been discussed until now, recent
experiments for closely related systems, namely, water
clusters on metal surfaces, indicate that quantum effects

can be important. Specifically, quantum tunneling has been
suggested to explain the anomalously rapid diffusion and
H bond dynamics of water clusters on Pd and Cu [15,16].
To tackle the water-hydroxyl overlayers, we performed
ab initio path-integral molecular dynamics (PIMD) simu-
lations on Pt(111), Ru(0001), and Ni(111) at 160 K, a
typical temperature used in experimental studies of these
systems. In ab initio PIMD, both the electrons and nuclei
are treated as quantum particles in contrast to traditional
ab initiomolecular dynamics (MD) in which the nuclei are
classical pointlike particles and only the electrons are

FIG. 1 (color online). Structure of the
ffiffiffi
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� R30� over-
layer (with classical nuclei) that forms on metal surfaces. Side
views of the structures when the proton is donated from water to

hydroxyl (upper, labeled ‘‘short’’) and from hydroxyl to water
(lower, labeled ‘‘long’’) are shown on the right. Classically, at
the ground state, the short and long H bond lengths are�1:7 and
�2:1 �A on Pt, �1:6 and �1:9 �A on Ru, and �1:4 and �1:6 �A

on Ni, respectively. The reaction coordinate for proton transfer �
is defined as 7ROaH

� RObH
, where ROaH

and RObH
are the

instantaneous O-H distances between Oa and H and Ob and H,

respectively. For a proton equidistant from its two O neighbors
� ¼ 0 and upon proton transfer from one O to another � changes
sign.
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treated quantum mechanically (see, e.g., [12,17–19]). All
calculations were performed using the plane-wave density-
functional theory (DFT) code6 CASTEP [20] with the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional [21] and
ffiffiffi

3
p

�
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3
p

� R30� surface unit cells
[22]. Pt and Ru were selected because they support the

most well-characterized
ffiffiffi
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p

�
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p

� R30� water-hydroxyl
overlayers (see, e.g., Refs. [1–7,23–25]) and Ni because it
has a relatively small lattice constant, although to our
knowledge water-hydroxyl films have not yet been char-
acterized on it [1].

The simulations reported here reveal that when quantum
nuclear fluctuations are taken into account, the distinction
between covalent and H bonds lessens considerably [on
Pt(111) and Ru(0001)] or almost completely disappears
[on Ni(111)], and as a consequence the traditional ‘‘ball-
and-stick’’ description of the molecules in the overlayers is
no longer appropriate. In addition, the quantum fluctua-
tions can impact indirectly on the O atom positions within
the overlayer, altering the relative proportion of short and
long O-O distances. Overall, this study reveals that water-
hydroxyl overlayers on metal surfaces exhibit pronounced
quantum nuclear effects and that there is a subtle interplay
between the quantum nature of the proton in these over-
layers and the lattice constant of the substrate. This inter-
play suggests that water-metal interfaces provide an
excellent platform on which to systematically tune the
magnitude of quantum effects in H bonds.

Before we consider these systems at a quantum level, we
briefly look at their properties in the classical perspective.
The overlayers are comprised of hexagonal H bonded net-
works of water and hydroxyl bonded above metal atoms of

the substrate in a
ffiffiffi

3
p

�
ffiffiffi

3
p

� R30� periodicity. Both types
of molecule lie almost parallel to the surface, forming an
extended 2D network. Because OH is a better acceptor of
H bonds than it is a donor, there is an asymmetry in the
overlayer with each molecule involved in two short and
one long H bond at the classical ground state (Fig. 1). At
finite temperature ab initio MD simulations with classical
nuclei show that this asymmetry is still present, although
thermal broadening causes the peaks associated with the
long and short H bonds to overlap, particularly on Ni which
has the smallest lattice constant. The asymmetry is illus-
trated in Fig. 2 where probability distributions of O-H and
O-O distances are plotted on Pt, Ru, and Ni. In addition, the
probability distributions of O-H distances clearly show that
the overlayer in the classical picture is comprised of indi-
vidual H2O and OH molecules H bonded to each other.

There is a sharp peak at �1:0 �A characteristic of the
covalent bonds of water and hydroxyl and broader peaks

at �1:7–2:1 �A, �1:6–1:9 �A, and �1:5 �A characteristic of
the H bonds on Pt, Ru, and Ni, respectively.

Let us now consider how the picture that emerges differs
at the quantum mechanical level with PIMD. A key result
is that there is no longer a clear division between short
covalent and longer H bonds. This is clear from the dis-

tributions of O-H and O-O distances plotted alongside the
classical results in Fig. 2 (in the PIMD simulations, dis-
tances are measured between the centroids of each quan-
tum particle; results obtained by measuring the average
bead distances are the same). Looking at Pt first, the
population of covalent O-H bonds is reduced by one third
and replaced with a clearly nonzero probability distribution
over the entire range of 1–1.5 Å [Fig. 2(a)]. Likewise, the
proportion of short O-O distances is reduced from two
thirds to one third, and the center of the peak associated
with the short O-O separations moves from �2:7 to

�2:5 �A [Fig. 2(b)]. These changes are associated with
one third of the shared protons being delocalized between
the two Os to which they are bonded. This delocalized
proton, in turn, ‘‘pulls’’ the Os closer together and in so
doing creates an ‘‘H3O2 complex’’ with a shared proton
that is neither well described as being covalently nor H
bonded to its two Os. A typical snapshot from the PIMD
simulation is shown in Fig. 2(g) with the H3O2 complex
located along one particular O-O axis. The snapshot also
shows how when the two Os on either side of the shared

FIG. 2 (color online). Selected structural properties of the

classical and quantum overlayers. Probability distributions of
O-H [(a), (c), (e)] and O-O distances [(b), (d), (f)] on Pt, Ru, and
Ni at 160 K, as obtained from MD with classical nuclei (labeled

classical, black solid lines) and PIMD [labeled quantum, (red)
dashed lines]. On the bottom [(g)–(i)] snapshots for typical
spatial configurations of the overlayer on Pt (left), Ru (middle),

and Ni (right) obtained from PIMD (with every atom represented
by 16 beads) are shown. On Pt and Ru at any given snapshot one
proton is equally shared by two of the Os yielding an inter-
mediate ‘‘H3O2’’ complex. On Ni at any given snapshot several

protons can simultaneously be shared between the oxygens.
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proton are drawn together, the distances to their other
O neighbors are increased. It is this effect that leads to a
larger proportion of long O-O distances than was observed
in the classical picture [Fig. 2(b)]. On Ru, similar delocal-
ization of the H atoms is observed and again the structure
contains a H3O2 complex [Fig. 2(h)]. The smaller lattice
constant of Ru means that only a small enhancement in the

proportion of short O-O separations (at�2:5 �A) is required
to enable proton delocalization [Fig. 2(d)]. Upon moving to
Ni, the effects brought about through quantum fluctuations
of the protons are even more pronounced [Fig. 2(e)], and
the peaks associated with the covalent O-H bonds are
broadened so much that a broad double peaked distribution
emerges, totally eliminating the distinction between cova-
lent and H bonds in the classical picture. Because of the
smaller lattice constant of Ni, this delocalization is pos-
sible without any major rearrangement of the O atom
‘‘skeleton’’ [Fig. 2(f)] and, as a consequence, several pro-
tons can be simultaneously delocalized. A snapshot from
the PIMD simulations on Ni in which several protons are
delocalized and the distinction between covalent and
H bonds is completely lost is shown in Fig. 2(i).

The different probability distributions observed in the
classical and quantum simulations reveal the fundamen-
tally different nature of the two. To examine this from a
more rigorous statistical perspective, we now consider the
free energy profiles for the protons along the intermolecu-
lar axes (Fig. 3). We define the coordinate for proton
transfer � as the difference between two instantaneous
O-H distances (see the caption of Fig. 1 for details). For
the analysis to be as unbiased as possible, all inequivalent
H bonds in the system are taken into account, i.e., the free
energy profile discussed at this stage is an average over all
H bonds in the overlayer. The profile from the MD simu-
lations with classical nuclei is characterized by two par-
tially overlapping valleys corresponding to the short and

long H bonds at �� 0:7 and �� 1:1 �A on Pt and �� 0:6

and �� 0:9 �A on Ru. On Ni, a single broad valley at ��
0:5 �A is observed, since, as we have said, thermal broad-
ening obscures the distinction between short and long
H bonds on this surface. In the classical simulations,
thermally activated proton transfer is infrequent, consistent

with the presence of relatively large classical free energy

barriers on all three substrates at � ¼ 0. Moving to the

quantum free energy profiles obtained from the PIMD

simulations, it can be seen that they differ significantly

from the classical profiles on all three substrates. On both

Pt and Ru the minima for the long H bonds remain, but

those associated with the short H bonds disappear due to

the formation of the intermediate H3O2 complexes dis-

cussed already. On Ni, the single valley at �� 0:5 �A is

softened and shifted to �� 0:4 �A. The key differences,

however, between the quantum and classical free energy

profiles is that the quantum free energy barriers are con-

siderably smaller than the classical ones. In addition, upon

going from Pt to Ru to Ni, the height of the barrier and the

area beneath it decreases. This indicates that the proton

transfer probability increases as the lattice constant is
reduced.
So far we have seen evidence for a connection between

proton delocalization and the O-O distance distributions, as

illustrated in Figs. 2(b) and 2(d) for Pt and Ru, respectively.

A deeper understanding of this behavior can be obtained by

correlating the location of the proton along the intermo-

lecular axes with the corresponding O-O distances. To this

end, in Fig. 4, probability distribution functions of � and

RO-O are plotted from the MD and PIMD simulations. In

the classical perspective [Figs. 4(a), 4(d), and 4(g)], these

are characterized by negligible probability distributions at
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FIG. 3 (color online). Free energy profiles (�F) for the protons

along the intermolecular axes on Pt (left), Ru (middle), and
Ni (right) at 160 K, obtained from MD (labeled classical, black
solid lines) and PIMD [labeled quantum, (red) dashed lines]. The
reaction coordinate � is defined in Fig. 1. The free energy is

calculated from �Fð�Þ ¼ �kBT ln½Pð�Þ�, where Pð�Þ is the
probability distribution of �s and kB is the Boltzmann constant.

FIG. 4 (color). Probability distributions in the MD [(a), (d),
(g)] and PIMD [(b), (e), (h)] simulations as functions of � and
ROO. � is the reaction coordinate as defined in Fig. 1. In panels

(c), (f), and (i) probability distribution functions for only the
‘‘most active proton,’’ that is, the proton with smallest � at each
time step, are shown. All MD and PIMD distribution functions

have been symmetrized about �. For more details on the simu-
lation lengths, see the supplementary information in Ref. [22].
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� ¼ 0, consistent with the fact that each proton covalently
bonds to one O and hops from one side to the other over a
barrier at � ¼ 0. The O distribution has peaks for the short
and long H bonds on Pt and Ru and one merged peak on Ni.
When quantum fluctuations are included, finite distribu-
tions at � ¼ 0 appear on all three substrates. These corre-
spond to the delocalized protons, and the associated O-O

distance of these protons is �2:4–� 2:5 �A on each sub-
strate. To understand the delocalized protons in more de-
tail, we now focus on the individual proton which at any
given snapshot in the PIMD simulations has the smallest �.
This is the so-called ‘‘most active proton,’’ the one that has
the greatest likelihood of transferring [19]. On Pt and Ru,
this is always the proton located within the shortest O-O

bond. On Ni, where the average O-O distance is �2:5 �A,
the most active proton need not necessarily be the one
within the shortest O-O bond. The results of this analysis
are reported in Figs. 4(c), 4(f), and 4(i), with the key
finding being that on all three substrates the probability
distributions for the most active proton exhibit a single
maximum at � ¼ 0. Therefore, the corresponding free
energy barrier for the transfer of this most active proton
is zero and the classical barrier is wiped out by quantum
fluctuations. The ‘‘horseshoe’’ shape of the probability
distributions on Pt and Ru reveal that the covalently
bonded proton requires the O atoms to at first move to-
gether before the proton becomes delocalized between the
two oxygens. At this point, the zero point energy level of
the proton resides above the classical potential energy
barrier. Subsequent thermal fluctuations cause the oxygens
to move apart and, in so doing, the proton can be trans-
ferred from one O to the other. Therefore, the observed
mechanism for proton transfer on Pt and Ru is the so-called
‘‘adiabatic proton transfer’’ [26], predicted for the diffu-
sion mechanism of the excess proton in water and for ice at
certain high pressures [12,19]. For the excess proton in
water and high pressure ice, it is electrostatics and pres-
sure, respectively, that enable proton transfer whereas here
it is the substrate. On Ni, due to the small lattice constant,
the O-O distances are already short enough such that
proton delocalization is possible without any rearrange-
ment of the O atoms.

The results reported here demonstrate that quantum
delocalization has a profound impact on the properties of
water-hydroxyl overlayers on Pt, Ru, and Ni, leading to a
blurring of the lines between covalent and H bonds. We
expect that equally pronounced quantum behavior will be
observed for similar overlayers on other metal substrates,
especially those which have relevant interatomic distances
between those of Ni and Pt. More generally these effects
will be relevant to many other interfacial and confined
water systems including biological and aqueous systems
whenever the substrate forces the molecules close together
or polarizes them so as to reduce the proton transfer
barriers. The pronounced impact the quantum nature of
the shared proton can have on the heavy atom O skeleton

suggests that a quantitative low-energy electron diffraction
analysis of water-hydroxyl overlayers, on, e.g., Pt, pre-
pared with light and heavy water may provide a means to
experimentally verify some of the predictions made here.
Similarly, signatures of the quantum delocalization for
interfacial water may be detectable with techniques such
as electron energy loss spectroscopy, helium scattering, or
neutron Compton scattering. We hope this work will stimu-
late such studies.
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