70 research outputs found

    Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study

    Get PDF
    Obtaining in vivo data of particle transport in the human lung is often difficult, if not impossible. Computational fluid dynamics (CFD) can provide detailed information on aerosol transport in realistic airway geometries. This paper provides a review of the key CFD studies of aerosol transport in the acinar region of the human lung. It also describes the first ever three-dimensional model of a single fully alveolated duct with moving boundaries allowing for the cyclic expansion and contraction that occurs during breathing. Studies of intra-acinar aerosol transport performed in models with stationary walls (SWs) showed that flow patterns were influenced by the geometric characteristics of the alveolar aperture, the presence of the alveolar septa contributed to the penetration of the particles into the lung periphery and there were large inhomogeneities in deposition patterns within the acinar structure. Recent studies have now used acinar models with moving walls. In these cases, particles penetrate the alveolar cavities not only as a result of sedimentation and diffusion but also as a result of convective transport, resulting in a much higher deposition prediction than that in SW models. Thus, models that fail to incorporate alveolar wall motions probably underestimate aerosol deposition in the acinar region of the lung

    Target trial emulation: Do antimicrobials or gastrointestinal nutraceuticals prescribed at first presentation for acute diarrhoea cause a better clinical outcome in dogs under primary veterinary care in the UK?

    Get PDF
    Target trial emulation applies design principles from randomised controlled trials to the analysis of observational data for causal inference and is increasingly used within human epidemiology. Veterinary electronic clinical records represent a potentially valuable source of information to estimate real-world causal effects for companion animal species. This study employed the target trial framework to evaluate the usefulness on veterinary observational data. Acute diarrhoea in dogs was used as a clinical exemplar. Inclusion required dogs aged ≥ 3 months and < 10 years, presenting for veterinary primary care with acute diarrhoea during 2019. Treatment strategies were: 1. antimicrobial prescription compared to no antimicrobial prescription and 2. gastrointestinal nutraceutical prescription compared to no gastrointestinal nutraceutical prescription. The primary outcome was clinical resolution (defined as no revisit with ongoing diarrhoea within 30 days from the date of first presentation). Informed from a directed acyclic graph, data on the following covariates were collected: age, breed, bodyweight, insurance status, comorbidities, vomiting, reduced appetite, haematochezia, pyrexia, duration, additional treatment prescription and veterinary group. Inverse probability of treatment weighting was used to balance covariates between the treatment groups for each of the two target trials. The risk difference (RD) of 0.4% (95% CI -4.5% to 5.3%) was non-significant for clinical resolution in dogs treated with antimicrobials compared with dogs not treated with antimicrobials. The risk difference (RD) of 0.3% (95% CI -4.5% to 5.0%) was non-significant for clinical resolution in dogs treated with gastrointestinal nutraceuticals compared with dogs not treated with gastrointestinal nutraceuticals. This study successfully applied the target trial framework to veterinary observational data. The findings show that antimicrobial or gastrointestinal prescription at first presentation of acute diarrhoea in dogs causes no difference in clinical resolution. The findings support the recommendation for veterinary professionals to limit antimicrobial use for acute diarrhoea in dogs

    Zero-Point Motion of Liquid and Solid Hydrogen

    Full text link
    We present an inelastic neutron scattering study of liquid and solid hydrogen carried out using the wide Angular Range Chopper Spectrometer at Oak Ridge National Laboratory. From the observed dynamic structure factor, we obtained empirical estimates of the molecular mean-squared displacement and average translational kinetic energy. We find that the former quantity increases with temperature, indicating that a combination of thermal and quantum effects is important near the liquid-solid phase transition, contrary to previous measurements. We also find that the kinetic energy drops dramatically upon melting of the crystals, a consequence of the large increase in molar volume together with the Heisenberg indeterminacy principle. Our results are compared with quantum Monte Carlo simulations based on different model potentials. In general, there is good agreement between our findings and theoretical predictions based on the Silvera-Goldman and Buck potentials.Comment: 20 pages, 10 figures in color, submitted to Phys. Rev.

    Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure

    Get PDF
    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath VA/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis VA/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 ± 0.008 ml−1 at baseline vs. 0.010 ± 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 ± 0.005, p < 0.05), with improved VA/Q homogeneity inversely correlated to dive severity. No changes in VA/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 ± 10 ml at baseline vs. 56 ± 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 ± 0.18 l vs. 5.21 ± 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 ± 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 ± 0.31 L to 4.87 ± 0.32, p < 0.05). The degree of VA/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation

    Toxicity of lunar dust

    Full text link
    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.Comment: 62 pages, 9 figures, 2 tables, accepted for publication in Planetary and Space Scienc

    Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis

    Get PDF
    INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI

    Lung Volume, Breathing Pattern and Ventilation Inhomogeneity in Preterm and Term Infants

    Get PDF
    BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process

    Treatment of ARDS With Prone Positioning

    Full text link
    Prone positioning was first proposed in the 1970s as a method to improve gas exchange in ARDS. Subsequent observations of dramatic improvement in oxygenation with simple patient rotation motivated the next several decades of research. This work elucidated the physiological mechanisms underlying changes in gas exchange and respiratory mechanics with prone ventilation. However, translating physiological improvements into a clinical benefit has proved challenging; several contemporary trials showed no major clinical benefits with prone positioning. By optimizing patient selection and treatment protocols, the recent Proning Severe ARDS Patients (PROSEVA) trial demonstrated a significant mortality benefit with prone ventilation. This trial, and subsequent meta-analyses, support the role of prone positioning as an effective therapy to reduce mortality in severe ARDS, particularly when applied early with other lung-protective strategies. This review discusses the physiological principles, clinical evidence, and practical application of prone ventilation in ARDS
    • …
    corecore