49 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    Get PDF
    The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM)

    XVI International Congress of Control Electronics and Telecommunications: "Techno-scientific considerations for a post-pandemic world intensive in knowledge, innovation and sustainable local development"

    Get PDF
    Este título, sugestivo por los impactos durante la situación de la Covid 19 en el mundo, y que en Colombia lastimosamente han sido muy críticos, permiten asumir la obligada superación de tensiones sociales, políticas, y económicas; pero sobre todo científicas y tecnológicas. Inicialmente, esto supone la existencia de una capacidad de la sociedad colombiana por recuperar su estado inicial después de que haya cesado la perturbación a la que fue sometida por la catastrófica pandemia, y superar ese anterior estado de cosas ya que se encontraban -y aún se encuentran- muchos problemas locales mal resueltos, medianamente resueltos, y muchos sin resolver: es decir, habrá que rediseñar y fortalecer una probada resiliencia social existente - producto del prolongado conflicto social colombiano superado parcialmente por un proceso de paz exitoso - desde la tecnociencia local; como lo indicaba Markus Brunnermeier - economista alemán y catedrático de economía de la Universidad de Princeton- en su libro The Resilient Society…La cuestión no es preveerlo todo sino poder reaccionar…aprender a recuperarse rápido.This title, suggestive of the impacts during the Covid 19 situation in the world, and which have unfortunately been very critical in Colombia, allows us to assume the obligatory overcoming of social, political, and economic tensions; but above all scientific and technological. Initially, this supposes the existence of a capacity of Colombian society to recover its initial state after the disturbance to which it was subjected by the catastrophic pandemic has ceased, and to overcome that previous state of affairs since it was found -and still is find - many local problems poorly resolved, moderately resolved, and many unresolved: that is, an existing social resilience test will have to be redesigned and strengthened - product of the prolonged Colombian social conflict partially overcome by a successful peace process - from local technoscience; As Markus Brunnermeier - German economist and professor of economics at Princeton University - indicates in his book The Resilient Society...The question is not to foresee everything but to be able to react...learn to recover quickly.Bogot

    The impacts of computers on the Latin American countries

    No full text

    Computer Similarity in a Reuse Library System: An AI-based Approach

    No full text
    This paper presents an AI-based library system for software reuse, called AIRS, that allows a developer to browse a software library in search of components that best meet some stated requirement. A component is described by a set of (feature,term) pairs. A feature represents a classification criterion, and is defined by a set of related terms. AIRS also allows for the representation of packages, that is, logical units that group a set of related components. As with components, packages are described in terms of features. Unlike components, a package description includes a set of member components. Candidate reuse components (and packages) are selected from the library based on the degree of similarity between their descriptions and a given target description. Similarity is quantified by a non-negative magnitude (called distance) that represents the expected effort required to obtain the target given a candidate. Distances are computed by functions called comparators. Three such functions are presented: the subsumption, the closeness, and the package comparators. We present a formalization of the concepts on which the AIRS classification approach is based. The functionality of a prototype implementation of the AIRS system is illustrated by application to two different software libraries: a set of Ada packages for data structure manipulation, and a set of C components for use in Command, Control, and Information Systems. Finally, we discuss some of the ideas we are currently exploring to automate the construction of AIRS classification libraries

    Identification of V6.51L as a selectivity hotspot in stereoselective A(2B) adenosine receptor antagonist recognition

    Get PDF
    The four adenosine receptors (ARs) A(1)AR, A(2A)AR, A(2B)AR(,) and A(3)AR are G protein-coupled receptors (GPCRs) for which an exceptional amount of experimental and structural data is available. Still, limited success has been achieved in getting new chemical modulators on the market. As such, there is a clear interest in the design of novel selective chemical entities for this family of receptors. In this work, we investigate the selective recognition of ISAM-140, a recently reported A(2B)AR reference antagonist. A combination of semipreparative chiral HPLC, circular dichroism and X-ray crystallography was used to separate and unequivocally assign the configuration of each enantiomer. Subsequently affinity evaluation for both A(2A) and A(2B) receptors demonstrate the stereospecific and selective recognition of (S)-ISAM140 to the A(2B)AR. The molecular modeling suggested that the structural determinants of this selectivity profile would be residue V250(6.51) in A(2B)AR, which is a leucine in all other ARs including the closely related A(2A)AR. This was herein confirmed by radioligand binding assays and rigorous free energy perturbation (FEP) calculations performed on the L249V(6.51) mutant A(2A)AR receptor. Taken together, this study provides further insights in the binding mode of these A(2B)AR antagonists, paving the way for future ligand optimization
    corecore