161 research outputs found

    Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1‐specific CD8+ T cells

    Get PDF
    Objectives Vaccines that prime Wilms' tumor 1 (WT1)‐specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C‐type lectin‐like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T‐cell responses. We developed a new vaccine comprising a human anti‐CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1‐specific CD8+ T cells. Methods WT1 was genetically fused to antibodies specific for human CLEC9A, DEC‐205 or β‐galactosidase (untargeted control). Activation of WT1‐specific CD8+ T‐cell lines following cross‐presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1‐specific CD8+ T cells, were used to investigate naïve WT1‐specific CD8+ T‐cell priming. Results The CLEC9A‐WT1 vaccine promoted cross‐presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC‐205‐WT1 and untargeted control‐WT1 vaccines. Conclusions Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag‐presenting cells via DEC‐205, suggesting that cross‐presentation by CD141+ DCs is sufficient for effective CD8+ T‐cell priming in humans. The CLEC9A‐WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1

    A charter to improve patient care in severe asthma

    Get PDF
    Severe asthma is a subtype of asthma that is difficult to treat and control. By conservative estimates, severe asthma affects approximately 5-10% of patients with asthma worldwide. Severe asthma impairs patients' health-related quality of life, and patients are at risk of life-threatening asthma attacks. Severe asthma also accounts for the majority of health care expenditures associated with asthma. Guidelines recommend that patients with severe asthma be referred to a specialist respiratory team for correct diagnosis and expert management. This is particularly important to ensure that they have access to newly available biologic treatments. However, many patients with severe asthma can suffer multiple asthma attacks and wait several years before they are referred for specialist care. As global patient advocates, we believe it is essential to raise awareness and understanding for patients, caregivers, health care professionals, and the public about the substantial impact of severe asthma and to create opportunities for improving patient care. Patients should be empowered to live a life free of symptoms and the adverse effects of traditional medications (e.g., oral corticosteroids), reducing hospital visits and emergency care, the loss of school and work days, and the constraints placed on their daily lives. Here we provide a Patient Charter for severe asthma, consisting of six core principles, to mobilize national governments, health care providers, payer policymakers, lung health industry partners, and patients/caregivers to address the unmet need and burden in severe asthma and ultimately work together to deliver meaningful improvements in care.Funding for this study, the article processing charges, and the open access charge was provided by AstraZeneca

    Pitfalls in mutational testing and reporting of common KIT and PDGFRA mutations in gastrointestinal stromal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutation analysis of <it>KIT </it>and <it>PDGFRA </it>genes in gastrointestinal stromal tumors is gaining increasing importance for prognosis of GISTs and for prediction of treatment response. Several groups have identified specific mutational subtypes in <it>KIT </it>exon 11 associated with an increased risk of metastatic disease whereas GISTs with <it>PDGFRA </it>mutations often behave less aggressive. Furthermore, in advanced GIST disease with proven <it>KIT </it>exon 9 mutation the doubled daily dose of 800 mg imatinib increases the progression free survival and is now recommended both in the European and the American Guidelines. In Germany, there are still no general rules how to perform mutational analysis.</p> <p>Methods</p> <p>When comparing results from six different molecular laboratories we recognized the need of standardisation. Six German university laboratories with experience in mutation analysis in GISTs joined together to develop recommendations for the mutation analysis of the most common and clinically relevant hot spots, i. e. <it>KIT </it>exons 9 and 11 and <it>PDGFRA </it>exon 18. We performed a three-phased interlaboratory trial to identify pitfalls in performing molecular analysis in GISTs.</p> <p>Results</p> <p>We developed a design for a continuous external laboratory trial. In 2009 this external trial was conducted by 19 laboratories via the initiative for quality assurance in pathology (QuiP) of the German Society of Pathology and the Professional Association of German Pathologists.</p> <p>Conclusions</p> <p>By performing a three-phased internal interlaboratory trial and conducting an external trial in Germany we were able to identify potential pitfalls when performing KIT and PDGFRA mutational analysis in gastrointestinal stromal tumors. We developed standard operation procedures which are provided with the manuscript to allow other laboratories to prevent these pitfalls.</p

    Psychological placebo and nocebo effects on pain rely on expectation and previous experience

    Get PDF
    AbstractExpectation and previous experience are both well established key mediators of placebo and nocebo effects. However, the investigation of their respective contribution to placebo and nocebo responses is rather difficult because most placebo and nocebo manipulations are contaminated by pre-existing treatment expectancies resulting from a learning history of previous medical interventions. To circumvent any resemblance to classical treatments, a purely psychological placebo-nocebo manipulation was established, namely, the “visual stripe pattern–induced modulation of pain.” To this end, experience and expectation regarding the effects of different visual cues (stripe patterns) on pain were varied across 3 different groups, with either only placebo instruction (expectation), placebo conditioning (experience), or both (expectation + experience) applied. Only the combined manipulation (expectation + experience) revealed significant behavioral and physiological placebo–nocebo effects on pain. Two subsequent experiments, which, in addition to placebo and nocebo cues, included a neutral control condition further showed that especially nocebo responses were more easily induced by this psychological placebo and nocebo manipulation. The results emphasize the great effect of psychological processes on placebo and nocebo effects. Particularly, nocebo effects should be addressed more thoroughly and carefully considered in clinical practice to prevent the accidental induction of side effects.PerspectiveEven purely psychological interventions that lack any resemblance to classical pain treatments might alter subjective and physiological pain correlates. A manipulation of treatment expectation and actual treatment experience were mandatory to elicit this effect. Nocebo effects were especially induced, which indicated the necessity for prevention of accidental side effects besides exploitation of placebo responses

    Complex speech-language therapy interventions for stroke-related aphasia: the RELEASE study incorporating a systematic review and individual participant data network meta-analysis

    Get PDF
    Background: People with language problems following stroke (aphasia) benefit from speech and language therapy. Optimising speech and language therapy for aphasia recovery is a research priority. Objectives: The objectives were to explore patterns and predictors of language and communication recovery, optimum speech and language therapy intervention provision, and whether or not effectiveness varies by participant subgroup or language domain. Design: This research comprised a systematic review, a meta-analysis and a network meta-analysis of individual participant data. Setting: Participant data were collected in research and clinical settings. Interventions: The intervention under investigation was speech and language therapy for aphasia after stroke. Main outcome measures: The main outcome measures were absolute changes in language scores from baseline on overall language ability, auditory comprehension, spoken language, reading comprehension, writing and functional communication. Data sources and participants: Electronic databases were systematically searched, including MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, Linguistic and Language Behavior Abstracts and SpeechBITE (searched from inception to 2015). The results were screened for eligibility, and published and unpublished data sets (randomised controlled trials, non-randomised controlled trials, cohort studies, case series, registries) with at least 10 individual participant data reporting aphasia duration and severity were identified. Existing collaborators and primary researchers named in identified records were invited to contribute electronic data sets. Individual participant data in the public domain were extracted. Review methods: Data on demographics, speech and language therapy interventions, outcomes and quality criteria were independently extracted by two reviewers, or available as individual participant data data sets. Meta-analysis and network meta-analysis were used to generate hypotheses. Results: We retrieved 5928 individual participant data from 174 data sets across 28 countries, comprising 75 electronic (3940 individual participant data), 47 randomised controlled trial (1778 individual participant data) and 91 speech and language therapy intervention (2746 individual participant data) data sets. The median participant age was 63 years (interquartile range 53-72 years). We identified 53 unavailable, but potentially eligible, randomised controlled trials (46 of these appeared to include speech and language therapy). Relevant individual participant data were filtered into each analysis. Statistically significant predictors of recovery included age (functional communication, individual participant data: 532, n = 14 randomised controlled trials) and sex (overall language ability, individual participant data: 482, n = 11 randomised controlled trials; functional communication, individual participant data: 532, n = 14 randomised controlled trials). Older age and being a longer time since aphasia onset predicted poorer recovery. A negative relationship between baseline severity score and change from baseline (p < 0.0001) may reflect the reduced improvement possible from high baseline scores. The frequency, duration, intensity and dosage of speech and language therapy were variously associated with auditory comprehension, naming and functional communication recovery. There were insufficient data to examine spontaneous recovery. The greatest overall gains in language ability [14.95 points (95% confidence interval 8.7 to 21.2 points) on the Western Aphasia Battery-Aphasia Quotient] and functional communication [0.78 points (95% confidence interval 0.48 to 1.1 points) on the Aachen Aphasia Test-Spontaneous Communication] were associated with receiving speech and language therapy 4 to 5 days weekly; for auditory comprehension [5.86 points (95% confidence interval 1.6 to 10.0 points) on the Aachen Aphasia Test-Token Test], the greatest gains were associated with receiving speech and language therapy 3 to 4 days weekly. The greatest overall gains in language ability [15.9 points (95% confidence interval 8.0 to 23.6 points) on the Western Aphasia Battery-Aphasia Quotient] and functional communication [0.77 points (95% confidence interval 0.36 to 1.2 points) on the Aachen Aphasia Test-Spontaneous Communication] were associated with speech and language therapy participation from 2 to 4 (and more than 9) hours weekly, whereas the highest auditory comprehension gains [7.3 points (95% confidence interval 4.1 to 10.5 points) on the Aachen Aphasia Test-Token Test] were associated with speech and language therapy participation in excess of 9 hours weekly (with similar gains notes for 4 hours weekly). While clinically similar gains were made alongside different speech and language therapy intensities, the greatest overall gains in language ability [18.37 points (95% confidence interval 10.58 to 26.16 points) on the Western Aphasia Battery-Aphasia Quotient] and auditory comprehension [5.23 points (95% confidence interval 1.51 to 8.95 points) on the Aachen Aphasia Test-Token Test] were associated with 20-50 hours of speech and language therapy. Network meta-analyses on naming and the duration of speech and language therapy interventions across language outcomes were unstable. Relative variance was acceptable (< 30%). Subgroups may benefit from specific interventions. Limitations: Data sets were graded as being at a low risk of bias but were predominantly based on highly selected research participants, assessments and interventions, thereby limiting generalisability. Conclusions: Frequency, intensity and dosage were associated with language gains from baseline, but varied by domain and subgroup

    Communicating simply, but not too simply: Reporting of participants and speech and language interventions for aphasia after stroke

    Get PDF
    Purpose: Speech and language pathology (SLP) for aphasia is a complex intervention delivered to a heterogeneous population within diverse settings. Simplistic descriptions of participants and interventions in research hinder replication, interpretation of results, guideline and research developments through secondary data analyses. This study aimed to describe the availability of participant and intervention descriptors in existing aphasia research datasets. Method: We systematically identified aphasia research datasets containing ≥10 participants with information on time since stroke and language ability. We extracted participant and SLP intervention descriptions and considered the availability of data compared to historical and current reporting standards. We developed an extension to the Template for Intervention Description and Replication checklist to support meaningful classification and synthesis of the SLP interventions to support secondary data analysis. Result: Of 11, 314 identified records we screened 1131 full texts and received 75 dataset contributions. We extracted data from 99 additional public domain datasets. Participant age (97.1%) and sex (90.8%) were commonly available. Prior stroke (25.8%), living context (12.1%) and socio-economic status (2.3%) were rarely available. Therapy impairment target, frequency and duration were most commonly available but predominately described at group level. Home practice (46.3%) and tailoring (functional relevance 46.3%) were inconsistently available. Conclusion : Gaps in the availability of participant and intervention details were significant, hampering clinical implementation of evidence into practice and development of our field of research. Improvements in the quality and consistency of participant and intervention data reported in aphasia research are required to maximise clinical implementation, replication in research and the generation of insights from secondary data analysis. Systematic review registration: PROSPERO CRD4201811094
    corecore