82 research outputs found

    Role of reversibility in viral capsid growth: A paradigm for self-assembly

    Full text link
    Self-assembly at submicroscopic scales is an important but little understood phenomenon. A prominent example is virus capsid growth, whose underlying behavior can be modeled using simple particles that assemble into polyhedral shells. Molecular dynamics simulation of shell formation in the presence of an atomistic solvent provides new insight into the self-assembly mechanism, notably that growth proceeds via a cascade of strongly reversible steps and, despite the large variety of possible intermediates, only a small fraction of highly bonded forms appear on the pathway.Comment: 4 pages, 4 figures (slightly shorter version, new Fig.2); further minor change

    Three-dimensional structure of a viral genome-delivery portal vertex.

    Get PDF
    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-Å-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a ~1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a ~200-Å-long α-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell

    Monte Carlo Simulations of HIV Capsid Protein Homodimer

    Get PDF
    Capsid protein (CA) is the building block of virus coats. To help understand how the HIV CA proteins self-organize into large assemblies of various shapes, we aim to computationally evaluate the binding affinity and interfaces in a CA homodimer. We model the N- and C-terminal domains (NTD and CTD) of the CA as rigid bodies and treat the five-residue loop between the two domains as a flexible linker. We adopt a transferrable residue-level coarse-grained energy function to describe the interactions between the protein domains. In seven extensive Monte Carlo simulations with different volumes, a large number of binding/unbinding transitions between the two CA proteins are observed, thus allowing a reliable estimation of the equilibrium probabilities for the dimeric vs monomeric forms. The obtained dissociation constant for the CA homodimer from our simulations, 20–25 μM, is in reasonable agreement with experimental measurement. A wide range of binding interfaces, primarily between the NTDs, are identified in the simulations. Although some observed bound structures here closely resemble the major binding interfaces in the capsid assembly, they are statistically insignificant in our simulation trajectories. Our results suggest that although the general purpose energy functions adopted here could reasonably reproduce the overall binding affinity for the CA homodimer, further adjustment would be needed to accurately represent the relative strength of individual binding interfaces

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine

    Get PDF
    The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine. Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well. Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics (MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells.

    Get PDF
    The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step

    Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells.

    Get PDF
    The pressure stability of bacteriophage P22 coat protein in both monomeric and polymeric forms under hydrostatic pressure was examined using light scattering, fluorescence emission, polarization, and lifetime methodology. The monomeric protein is very unstable toward pressure and undergoes significant structural changes at pressures as low as 0.5 kbar. These structural changes ultimately lead to denaturation of the subunit. Comparison of the protein denatured by pressure to that in guanidine hydrochloride suggests that pressure results in partial unfolding, perhaps by a domain mechanism. Fluorescence lifetime measurements indicate that at atmospheric pressure the local environments of the tryptophans are remarkably similar, suggesting they may be clustered. In contrast to the monomeric protein subunit, the protein when polymerized into procapsid shells is very stable to applied pressure and does not dissociate with pressure up to 2.5 kbar. However, under applied pressure the procapsid shells are cold-labile, suggesting they are entropically stabilized. The significance of these results in terms of virus assembly are discussed

    Local rules simulation of the kinetics of virus capsid self-assembly.

    No full text
    A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided
    • …
    corecore