31 research outputs found

    Effects of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFrEF

    Get PDF
    Background: Myocardial fibrosis is an important pathophysiological mechanism underlying the development of heart failure (HF). Given the biochemical targets of sacubitril/valsartan, we hypothesized that circulating biomarkers reflecting the mechanisms that determine extracellular matrix (ECM) homeostasis, including collagen synthesis, processing, and degradation, are altered by sacubitril/valsartan in comparison to enalapril. Objectives: The purpose of this study was to examine the effects of sacubitril/valsartan on biomarkers of ECM homeostasis and the association between the rate of primary composite outcome (cardiovascular death or HF hospitalization) and these biomarkers. Methods: Biomarkers at baseline (n = 2,067) and both baseline and 8 months after randomization (n = 1,776) included aldosterone, soluble ST2 (sST2), tissue inhibitor of matrix metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-2, MMP-9, Galectin-3 (Gal-3), N-terminal propeptide of collagen I (PINP), and N-terminal propeptide of collagen III (PIIINP). The effects of sacubitril/valsartan on biomarkers were compared with enalapril. Baseline biomarker values and changes from baseline to 8 months were related to primary outcome. Results: At baseline, the profibrotic biomarkers aldosterone, sST2, TIMP-1, Gal-3, PINP, and PIIINP were higher, and biomarkers associated with collagen degradation, MMP-2 and -9, were lower than published referent control values. Eight months after randomization, aldosterone, sST2, TIMP-1, MMP-9, PINP, and PIIINP had decreased more in the sacubitril/valsartan than enalapril group. At baseline, higher values of sST-2, TIMP-1, and PIIINP were associated with higher primary outcome rates. Changes from baseline to 8 months in sST-2 and TIMP-1 were associated with change in outcomes. Conclusions: Biomarkers associated with profibrotic signaling are altered in HF with reduced ejection fraction, sacubitril/valsartan significantly decreased many of these biomarkers, and these biomarkers have important prognostic value. These findings suggest that sacubitril/valsartan may reduce profibrotic signaling, which may contribute to the improved outcomes. (This Study Will Evaluate the Efficacy and Safety of LCZ696 Compared to Enalapril on Morbidity and Mortality of Patients With Chronic Heart Failure [PARADIGM-HF]; NCT01035255

    A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Tafenoquine for Weekly Prophylaxis against \u3ci\u3ePlasmodium falciparum\u3c/i\u3e

    Get PDF
    Tafenoquine is a promising new 8-aminoquinoline drug that may be useful for malaria prophylaxis in nonpregnant persons with normal glucose-6-phosphate dehydrogenase (G6PD) function. A randomized, doubleblind, placebo-controlled chemoprophylaxis trial was conducted with adult residents of northern Ghana to determine the minimum effective weekly dose of tafenoquine for the prevention of infection by Plasmodium falciparum. The primary end point was a positive malaria blood smear result during the 13 weeks of study drug coverage. Relative to the placebo, all 4 tafenoquine dosages demonstrated significant protection against P. falciparum infection: for 25 mg/week, protective efficacy was 32% (95% confidence interval [CI], 20%–43%); for 50 mg/week, 84% (95% CI, 75%–91%); for 100 mg/week, 87% (95% CI, 78%–93%); and for 200 mg/week, 86% (95% CI, 76%–92%). The mefloquine dosage of 250 mg/week also demonstrated significant protection against P. falciparum infection (protective efficacy, 86%; 95% CI, 72%–93%). There was little difference between study groups in the adverse events reported, and there was no evidence of a relationship between tafenoquine dosage and reports of physical complaints or the occurrence of abnormal laboratory parameters. Tafenoquine dosages of 50, 100, and 200 mg/week were safe, well tolerated, and effective against P. falciparum infection in this study population

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore