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Abstract 

 

Background: Fetal structural anomalies (FSA) detected by ultrasonography have a range of genetic 

aetiologies including chromosomal aneuploidy, copy number variations (CNVs) detectable by 

chromosomal microarrays (CMA) and pathogenic sequence variants in developmental genes. Investigations 

to detect aneuploidy and CNVs are routinely used for the investigation of FSA but information on the 

clinical utility of genome-wide next generation sequencing in the prenatal setting is limited.  

Methods: Whole exome sequencing (WES) was performed, after exclusion of aneuploidy and large CNVs, 

on a prospective cohort of 392 fetuses with FSA and in 772 parental samples (380 case-parental trios and 

12 case-parent dyads). Sequencing was interpreted based on a targeted developmental disorder virtual gene 

panel comprising 1536 genes. Genetic results relevant to the phenotype were validated and reported after 

the pregnancy was completed.    

Findings: After bioinformatic filtering and prioritisation, 201 genetic variants representing 155 potential 

diagnoses were selected as “potential pathogenic variants” and reviewed by a multidisciplinary clinical 

review panel (CRP). A diagnostic genetic abnormality was identified in 34/392 cases (8∙7%;95%CI:6∙1-

11∙9%) and a further 12(3∙1%) had a variant of uncertain significance (VUS) with potential clinical utility.  

Variant detection enabled syndromic and non-syndromic cases of fetal anomaly to be distinguished. 

Diagnostic variants were more common in fetuses with multisystem anomalies (more than one FSA) 

(16∙9%(13/77)), cardiac anomalies (18∙4%,(9/49)), skeletal anomalies (15∙4%,(6/39)) and hydrops fetalis 

(10∙5%,(2/19)) and less frequent in fetuses with isolated increased nuchal translucency (>4∙0 mm) in the 

first trimester (1∙1%, (1/88)).  

Interpretation: WES facilitates genetic diagnosis in FSAs enabling more accurate prediction of fetal 

prognosis and risk of recurrence in future pregnancies. However the overall detection rate in a prospectively 

ascertained, unselected cohort is lower than that suggested by previous smaller-scale studies of highly 

selected phenotypes.  
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Research in context  

 

Evidence before this study: 

Genome wide sequencing strategies such as whole exome (WES) or whole genome sequencing greatly 

increase the diagnostic yield over postnatal chromosomal microarray analysis (CMA) in children with 

developmental disorders. Previous, relatively small studies have suggested that the addition of WES to 

CMA for the investigation of fetal structural anomalies diagnosed by prenatal ultrasound could enable a 

genetic diagnosis to be made in the majority of cases with a FSA. However most such studies have been 

retrospective and include a small number (<30 cases) of highly selected subgroups of FSA; they provide 

limited information regarding the likely diagnostic yield in clinical practice of the application of WES for 

FSAs. 

Added value of this study 

In a prospectively ascertained cohort of FSA detected using prenatal ultrasound (in which aneuploidy and 

large copy number variants had been excluded) the overall diagnostic yield was 8∙7% after bioinformatic 

filtering of the WES and assessment by a multidisciplinary clinical review panel to reach consensus as to 

whether a WES finding was pathologic and causative. These data confirm that the addition of prenatal 

WES to CMA would increase the detection of genetic causes of FSA and provide important information 

on prognosis and future recurrence risks. The WES diagnostic yield varied with type of FSA suggesting 

that WES might be targeted to the phenotypic classes with highest clinical utility. The Prenatal 

Assessment of Genomes and Exomes study (PAGE) study also highlighted differences between the 

application of WES in the prenatal and postnatal period that will facilitate the translation of WES for FSA 

into clinical practice. 
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Introduction 

 

Approximately 3% of pregnancies will have a sonographically detected fetal structural anomaly (FSA) 

which may range from a single minor defect to severe multisystem anomalies incompatible with life.(1) 

Genetic investigations play an important part in the evaluation and clinical triage of FSAs. For many years 

prenatal  ‘conventional’ cytogenetic analysis was the first line investigation but more recently chromosomal 

microarray analysis (CMA) has been widely adopted to detect submicroscopic pathogenic copy number 

variations (CNVs).(2,3) Adding CMA testing to karyotyping increases the detection rate of chromosomal 

abnormalities by 3-5%.(2–4) FSAs may be associated with all types of genetic variation including aneuploidy, 

uniparental disomy (UPD), CNVs and intragenic mutations. There is increasing interest in the genome-

wide sequencing strategies to investigate prenatally detected congenital abnormalities. Though prenatal 

whole genome sequencing (WGS) has been described,(5) whole exome sequencing (WES) or targeted gene 

panels has received more interest because of the lower cost, limited amounts of fetal DNA available, 

requirement for rapid turnaround and greater sequencing depth. (6–13). Previously we performed WES in 29 

fetal-parental trios with an ultrasound detected FSA and identified a causative diagnosis in 10% of cases.(7) 

WES for the investigation of a range of FSA has been associated with a “diagnostic rate” of >50% but most 

previous studies have been small (<30) and/or confined to highly selected subgroups (see supplementary 

Table 1).(14,15) 

To define the potential utility of genome-wide sequencing strategies in prenatal diagnosis of FSA a large-

scale sequencing project, the Prenatal Assessment of Genomes and Exomes study (PAGE; 

http://www.pageuk.org) was initiated. In this paper we report on the experience to date of the clinical review 

panel (CRP) in considering the results of WES from 392 probands (and parental samples) presenting with 

a wide range of FSAs and highlight the issues encountered to date that have implications for the translation 

of prenatal WES into clinical practice.  
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Methods 

 

Subject recruitment and sample processing: Two groups (the Fetal Medicine Unit, Birmingham Women's 

& Children’s Foundation Trust/University of Birmingham and North East Thames Regional Genetics 

Laboratory, Great Ormond Street NHS Foundation Trust, London) coordinated patient recruitment through 

a network of 30 fetal medicine units across England and Scotland (Supplementary Figure 1). Following 

detection of a FSA at a routine ultrasound scan (USS) parents opting for invasive testing were offered the 

opportunity to participate in PAGE. All participants gave written informed consent and the study was 

approved by Research and Development offices at each of the participating institutions and by relevant 

Research Ethics Committees (NRES Committees:West Midlands-South Birmingham and London-

Harrow). Parental blood samples were collected for DNA extraction and fetal DNA was obtained from 

chorionic villi, amniotic fluid or fetal blood remaining after routine investigations (cases were excluded 

when these revealed aneuploidy/CNV explaining the phenotype). DNA was extracted at the two 

coordinating centres and shipped to the Wellcome Sanger Institute for WES. Participants were informed 

that the results of PAGE genetic analyses would not be available during the current pregnancy and only 

results relevant to the USS-detected FSA would be reported back to parents. To ensure that a range of 

phenotypes were included, prior to study it was agreed that the number of recruits with a specific phenotype 

would be capped at 20% of the total. 

Exome sequencing, variant detection and annotation: After WES, candidate pathogenic variants in a 

modified developmental disorder-associated gene list (see supplementary methods and supplementary 

Table 2)(16) were assessed and rare, protein altering variants where the inheritance pattern of the variant 

matches that of the gene were selected for clinical review. Sequencing data is available from the European 

Genome-phenome Archive (https://www.ebi.ac.uk/ega/). 

Data interpretation and variant classification: Candidate pathogenic variants were reviewed and classified 

by a clinical review panel (CRP) comprising at least six participants (including at least a clinical geneticist, 

a fetal medicine specialist, two clinical scientists and a bioinformatician) from the study team and, usually, 

a clinical geneticist and clinical laboratory scientist from the recruitment centre. Initially CRP meetings 

were face-to-face but subsequently distant participants joined by Webex/teleconferencing. All participants 

reviewed anonymised variant annotation data and clinical findings through the Sapientia (Congenica, UK) 

software. The CRP reached a consensus decision regarding variant classification (pathogenic/likely 

pathogenic/variant of uncertain significance/likely benign/benign) and relationship to prenatal sonographic 

phenotype. Causative pathogenic/ likely pathogenic variants were confirmed by Sanger sequencing in a 

NHS accredited laboratory. Research reports were issued to the local clinical geneticist/fetal medicine 

https://www.ebi.ac.uk/ega/
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specialist. Other types of variants were not validated or reported except in the case of a VUS that the CRP 

considered to have potential clinical utility. 

Statistical analysis: Variants were annotated with the probability of the relevant gene being loss of function 

intolerant (pLI).(17) pLI scores were compared using the Mann-Whitney U test. The diagnostic rate 

between different phenotypic classes was compared using Fisher's Exact test. All statistical analyses were 

conducted using R (version 3∙1∙3).  
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Results 

 

Ultrasound (USS) anomalies   

The 392 probands (164 female, 228 male) were categorised into 11 phenotypic classes according to the site 

of the USS-detected anomalies (see supplementary Table 3): abdominal(n=29), brain(n=38), cardiac(n=49), 

thoracic(n=12), facial(n=21), fetal hydrops(n=19), increased nuchal translucency(>4∙0mm)(n=88),  

renal(n=12), skeletal(n=39), spinal(n=8) and complex/multisystem anomalies(>2 FSAs detected) (n=77) 

(Supplementary Table 5). 

 

Variant assessments  

201 genetic variants, representing 155 potential diagnoses in 126 individuals were reviewed by the CRP 

(see Supplementary Table 4 and supplementary results). The mean number of potential diagnoses per 

proband considered by the CRP was 0∙40 (range 0-4). For complete trios (n=380), this value was 0∙37 

(range 0-4), while for dyads (n=12) this value was 1∙08 (range 0-4). 

 

The CRP assessed variants in 126 different developmental disorder genes with a median of one case per 

gene, however, 14 genes were assessed in multiple cases (KMT2D in 4 cases, FLNA in 3, and NRAS, CHD7, 

COL1A1, ZC4H2, ATP13A2, COL6A3, CHRNG, CDH23, HYDIN, BRCA1, RYR1 and COL18A1 in 2 each) 

(Figure 1A and 1B).   

 

Of the 155 potential diagnoses (comprising 187 SNVs and indels, 12 CNVs and 2 UPDs) in 126 probands 

(32∙1% of all cases analysed) considered, 34/392 probands were classed as harbouring likely pathogenic or 

pathogenic (LP/P) variant(s) relevant to the fetal anomaly (see Table 1), giving a diagnostic rate of 8∙7% 

(95% CI 6∙1 to 11∙9%). Twenty (59%) of the cases with a diagnostic variant had a de novo mutation (11 

truncating, 8 missense and 1 in-frame insertion), 13 cases had inherited the relevant mutation(s) (11 

autosomal recessively inherited disorders and two dominantly inherited disorders) and the final diagnosis 

had a chromosome 15 UPD. Factors associated with an increased likelihood of a diagnostic variant were 

protein truncating variants in monoallelic genes (diagnostic in 11/13 (84∙6%) cases compared to 26∙7% 

(8/30) for de novo missense variants in monoallelic genes, and de novo variants in a monoallelic disease 

gene (diagnostic in 20/45 cases (44∙4%)), compared to other potential diagnoses ((CNVs, inherited variants, 

UPDs) with 12∙7% diagnostic rate (14/110)). Genes harbouring diagnostic SNVs and indels had a higher 

median pLI than non-diagnostic variants (diagnostic=0∙91, non-diagnostic=0∙74) although this difference 

did not reach statistical significance (P=0∙1652).  
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Three of the 14 genes were considered by the CRP in multiple cases harboured diagnostic variants in two 

or more cases (KMT2D (n=3), COL1A1 (n=2) and CHRNG (n=2)) (see Figure 1B).  Cases with diagnostic 

KMT2D mutations (all de novo truncating) were present in multiple phenotypic classes (one multisystem, 

one cardiac and one hydrops).  

 

To our knowledge, this PAGE cohort includes the first instances of the prenatal identification of mutations 

in ANKRD11, ARCN1, CCDC103, COQ9, DNAH11, GATA4, MYCN, NR2F2, TAB2, TUBB and ZC4H2 

(Table 2). Further details of selected cases are provided in Case Reports #1 and #3 (see supplementary 

material).  

 

The diagnostic rate varied between the phenotypic groups (see figure 1C and supplementary Table 5). The 

highest diagnostic rates were in those with cardiac anomalies (18∙4% (9/49), p=0∙02 compared to all other 

phenotypes), multisystem fetal anomalies (16∙9% (13/77), p = 0∙01), skeletal anomalies (15∙4% (6/39)) and 

hydrops fetalis (10∙5%, (2/19)). Diagnostic rates in all other groups were <4% and the diagnostic rate in 

those with isolated increased nuchal translucency (>4∙0mm) was significantly lower than in all the other 

phenotypes combined (1/88, p= 0∙002).  

 

Consequences of a positive diagnosis were a low recurrence risk in 21 cases (20 with de novo mutations in 

monoallelic disease genes and one UPD) and high recurrence risk in 13 cases with inherited variants (11 

autosomal recessive and 2 dominant disorders). None of the diagnostic variants would currently, if detected 

in an ongoing pregnancy, have led to in utero fetal therapy. However, “in pregnancy” diagnosis could 

influence decisions about pregnancy outcome, e.g. in cardiac cases diagnostic variants were found in genes 

associated with postnatal extracardiac manifestations, including, learning disability (e.g. KMT2D, 

ANKDR11, SOS1, CCDC103). In pregnancy diagnosis might have enabled (in cases in which the parents 

choose to continue the pregnancy) better postnatal management (e.g. monitoring for neonatal 

hypoglycaemia in a Beckwith-Wiedemann syndrome fetus with exomphalos and a CDKN1C mutation) and 

it has been suggested that CoQ10 treatment might be helpful in COQ9-deficient children.(18) 

 

Clinically relevant non-diagnostic findings 

In addition to 34 WES-diagnosed cases, a further 12 cases had variants that were not considered diagnostic 

but merited further clinical and/or molecular investigations and were reported as “clinically-relevant-VUS” 

(see supplementary Table 6). These included a fetus with micrognathia, radial aplasia, ulnar and fibular 

hypoplasia, tibial and femoral shortening and an abnormal lumbar spine (probable hemivertebrae) on 

prenatal USS with compound heterozygous nonsense (c.2269C>T, p.Gln757Ter) and missense variants 
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(c.1580C>G, p.Thr527Arg) in RECQL4. Though the nonsense variant was considered pathogenic the 

missense substitution was classified as a VUS. Biallelic pathogenic variants in RECQL4 are associated with 

radial aplasia/hypoplasia syndromes and further follow up was considered to be indicated. In another case 

(PP0722) a de novo missense KMT2D variant was detected in a fetus with a 6∙7mm nuchal translucency  in 

the 1st trimester (see Text Box 1). In a further case an apparently pathogenic de novo nonsense variant in 

CHD7 was detected (PP1720) but the relevance to the prenatally detected brain ventriculomegaly was 

uncertain in the absence of any other features of CHARGE syndrome.  

 

Adding the 12 cases with potentially clinically relevant variants to the 34 diagnostic cases gave a total of 

46 (11∙7%, 95%CI 8∙7-15∙3%) in which WES provided a clinically relevant result.  

 

Ethical aspects of prenatal whole exome sequencing 

A detailed study of the ethical issues surrounding WES in prenatal diagnosis is in progress and has been 

reported separately.(19) Issues noted in the cases reported here included (a).identification of potentially 

pathogenic variants that might carry a recurrence risk but were apparently unrelated to the detected FSA 

and so, in accordance, with the ethical approval not reported, (b).identification of a VUS in a relevant 

candidate gene. Postnatally this might be handled by more detailed phenotyping and/or periodic review but 

in the prenatal setting phenotypic information is generally more limited and delaying a diagnostic decision 

is usually not an option. This is particularly difficult if the FSA might have a benign prognosis (e.g. talipes 

equinovarus anomaly); (c). detection of a heterozygous pathogenic variant in a relevant developmental gene 

associated with autosomal recessive disease, (d) detection of a pathogenic variant predicting late-onset adult 

disease (e.g. increased breast cancer risk in a mother found to be a carrier of a Fanconi anaemia gene variant) 

that is not relevant to the fetal abnormality.  

 

Pregnancy outcome data 

Pregnancy outcome was available in 316/392 cases (80∙6%). In 88 the parents opted for termination, 7 

ended in miscarriage, there were 13 stillbirths, 9 neonatal deaths, and 199 were live born babies. Of the 34 

cases with a WES diagnosis, post mortem or postnatal follow up was available in 31 cases (91∙2%) and was 

consistent with the molecular diagnosis. To our knowledge a postnatal genetic diagnosis hasn’t been made 

in any of the cases reviewed by the CRP and designated as having a variant without clinical relevance. 

However a diagnosis of Noonan syndrome was made in a child with a maternally inherited pathogenic RIT1 

variant (NM_006912∙5(RIT1):c.284G>C (p.Gly95Ala)). This variant was not considered by the CRP as it 

did not pass bioinformatic filtering because the mother was designated as normal phenotype.  The 

diagnostic yield for P/LP variants was significantly higher in cases with fetal demise (19/117) (miscarriage 

https://www.ncbi.nlm.nih.gov/clinvar/variation/60509/
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(0/7), termination of pregnancy (15/88), stillbirth (2/13), neonatal death (2/9) than in those cases resulting 

in a live birth (12/199): 16∙2% versus 6∙0% (P=0∙005).  
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Discussion 

 

In this large prospectively collected series of 392 probands with FSA detected by prenatal USS in a fetal 

medicine centre we identified a relevant diagnostic genetic variant in a developmental disorder gene in 

8∙7% (34/392). In addition, in a further 12 cases a genetic variant considered to be of potential clinical 

utility was identified and reported and so overall 11∙7% (46/392) of cases had a diagnostic or potentially 

clinically relevant variant. Previously published WES studies of FSA cohorts have reported diagnostic rates 

>50% (14) but most studies comprise small numbers of highly selected cases and the designation of variants 

as diagnostic was less stringent. The largest previous study reported in full performed WES on 84 deceased 

fetuses with diagnostic results in 20%. (11) Our lower diagnostic yield reflects differences in ascertainment 

strategies as we prospectively recruited all suitable cases and then undertook WES without genetic review 

(after aneuploidy and large CNVs were excluded) whereas Yates et al (11) studied deceased fetuses after 

termination of pregnancy or spontaneous fetal death. Around half of our cohort were live born (and had a 

lower diagnostic yield than cases with fetal demise) and the diagnostic yield in our cases associated with 

fetal demise was close to that reported by Yates et al.(11) The results of genome-wide sequencing in 

unselected idiopathic FSA are especially relevant when considering the potential for translating WES into 

clinical practice. We note that in a meeting abstract Wapner et al reported a causal pathogenic variant in 

7∙5% of sequential cases of FSA (a further 5∙5% had a karyotype or CMA anomaly). (20) 

WES diagnostic yields in FSA are significantly less than that reported (up to 43%) in children with 

developmental disorders despite a similar sequencing and interpretation strategy.(16,21) This reflects 

differences in ascertainment as the postnatal cohort was selected after assessment by clinical genetics 

specialists (and therefore enriched for likely monogenic disorders), whereas the PAGE cohort includes 

manifestations such as isolated large nuchal translucency, isolated talipes and neural tube defects all of 

which are known to have a low association with a monogenic aetiology. Additionally, greater imprecision 

in prenatal versus postnatal phenotyping may also contribute (e.g. postnatally expert dysmorphology 

developmental assessment is more readily available and can facilitate variant interpretation and increase 

diagnostic yield).  

We found higher diagnostic yields with cardiac anomalies, complex/multisystem anomalies, skeletal 

anomalies, and, to a lesser extent, hydrops fetalis but detection rates were <4% with other types of 

anomalies. KMT2D likely pathogenic variants were the most frequent diagnostic finding and were 

associated with a variety of phenotypes including  multisystem anomalies (PP1843), isolated complex 

cardiac defect (PP1864) and fetal hydrops and cystic hygroma (PP1573). KMT2D mutations cause Kabuki 

syndrome which is characterised by developmental delay, epilepsy, cardiac, genitourinary and 
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musculoskeletal anomalies and distinctive facial features.(22–25) Although the presentation of Kabuki 

syndrome with fetal hydrops has been reported previously, the distinctive facial dysmorphology is less 

apparent in infancy than older children and diagnosis may be difficult in the early postnatal period.(25,26)  

To date prenatal WES studies have implicated a large number of developmental genes but 19 genes 

(including KMT2D) have been reported in multiple studies (Supplementary Table 1). To our knowledge, 

we report the first prenatally diagnosed cases of mutations in genes associated with isolated (NR2F2, TAB2) 

and syndromic congenital heart disease (primary ciliary dyskinesia/CCDC103; KBG 

syndrome/ANKRD11)) (see Table 2), so in cases of prenatally diagnosed cardiac defect, WES can provide 

important information on the non-cardiac prognosis. Other genes for which prenatally diagnosed cases had 

not apparently been reported included ARCN1, COQ9, MYCN, TUBB and ZC4H2 (see Text Box #1 and #3 

and Table 2).  

To maximise diagnostic yield we analysed variants in the 1421 developmental disorder genes included in 

the DDG2P panel (www.ebi.ac.uk/gene2phenotype) (downloaded 25/4/17), plus 116 genes identified as 

being associated with a prenatal presentation from the literature (Supplementary Table 2). This resulted in 

about a third of trios having at least one potential diagnostic finding. When implementing WES into clinical 

practice, there is a strong argument for curating the DDG2P list to remove genes not associated with FSA 

(e.g. causes of non-syndromic learning disability) and using smaller phenotype-specific virtual gene panels 

in order to reduce the number of VUS that are irrelevant to the FSA. Careful thought is also required as to 

which FSA cases should be investigated by WES/WGS. For non-specific FSAs which can be associated 

with a normal outcome (e.g. talipes equinovarous, resolving ventriculomegaly or an isolated small nuchal 

translucency) not only might the diagnostic rate of WES be small but finding a VUS could be problematic 

in the absence of such a non-specific phenotype.  

The PAGE study protocol does not, currently involve real time “in pregnancy” variant interpretation and 

reporting but decisions on variant classification/validation/reporting were based on information that would 

have been available for an ongoing pregnancy and provided insights into the challenges for translating 

prenatal WES into clinical practice. For rapid and efficient variant prioritisation fetal-parental trio analysis 

is clearly preferable to fetus-only WES as trios enables rapid identification of de novo variants in 

monoallelic developmental disorder genes and defines whether heterozygous pathogenic variants in 

biallelic genes are in cis or in trans. Optimal variant interpretation requires a multidisciplinary approach 

and detailed clinical information, including the prenatal USS and family history should be available to the 

CRP (the importance of family history was illustrated by the finding of a familial MYCN variant (Text Box 

3) and a case of familial Noonan syndrome that was not referred to the CRP). Performing WES in a large-

http://www.ebi.ac.uk/gene2phenotype
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scale/central sequencing facility (as in PAGE) provides consistency of methodology and bioinformatic 

pipelines but makes face-to-face CRP meetings more difficult. We found that a virtual CRP enabled all 

relevant specialists (including the clinical staff who will communicate the results to the parents) to discuss 

the cases and reach a consensus. Currently, PAGE results are only communicated to women and their 

partners after the pregnancy is complete but our experience has highlighted some of the ethical issues that 

would be encountered in clinical practice (see above).  Many potential ethical issues (e.g. incidental 

findings, non-paternity etc.) are not unique to prenatal WES/WGS and can be managed according to 

standard policies but it is essential that parents receive clear information regarding which findings might 

(and might not) be reported.(19) The identification and addressing of practical ethical issues within the PAGE 

project illustrates the value of embedded ethics research and also highlights the importance of ethics support 

and training for health professionals for the successful introduction of the PAGE study protocols into 

clinical practice. It also highlights the need for guidelines for clinical implementation as have been 

published recently by the International Society of Prenatal Diagnosis. (27) 

It is critical that the clinical and molecular data from prenatal WES is added to a confidential database and 

shared widely in an anonymous manner (e.g. in DECIPHER for PAGE variants) so that variant 

interpretations can be improved and the prenatal genotype-phenotype associations defined. Such databases 

should be international to facilitate rapid accumulation of data.  

In addition to informing the current pregnancy management, WES/WGS can provide insight into recurrence 

risks and enable future prenatal genetic testing or preimplantation diagnosis (40% of PAGE cases with a 

diagnostic finding were associated with a high recurrence risk). Though many WES diagnoses were caused 

by low recurrence risk de novo mutations, such cases can be associated with a small increased recurrence 

risk from gonadal mosaicism and non-invasive prenatal diagnosis using analysis of circulating cell free 

fetal DNA in maternal plasma can be offered at an early stage of future pregnancies. (28) 

In conclusion, we report the largest study to date of WES for unselected FSA. Though the diagnostic yield 

is lower than that suggested by smaller, mostly retrospective, studies on selected groups, adding WES to 

CMA substantially increases the number of USS-detected FSA cases in which a genetic diagnosis can be 

made and improves the prognostic information that can be provided. This can have important implications 

for prognosis and recurrence risks. It seems inevitable that WES/WGS will be applied increasingly for 

investigating FSAs but large scale studies with careful curation of clinical and genomic data will greatly 

facilitate the challenges of incorporating WES/WGS into prenatal diagnostics.  
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Tables 

 

Table 1: Details of Diagnostic Variants classified by the PAGE Clinical Review Panel (see text for details) 

(hom=homozygous) 

 

PP_ID Phenotype Gene VEP Inheritance Zygosity 

PP0602 

Large 

NT>4.0 chr15 UPD chr15 UPD UPD NA 

PP0258 Abdominal MYCN missense 

inherited from 

affected parent Heterozygous 

PP1753 Multisystem CDKN1C frameshift_variant inherited Heterozygous 

PP0555 Multisystem EVC2 

frameshift_variant 

(hom) inherited Homozygous 

PP0318 Skeletal CHRNG 

frameshift_variant 

(hom) inherited Homozygous 

PP0342 Multisystem CHRNG frameshift_variant x 2 inherited Heterozygous 

PP0390 Cardiac CCDC103 missense_variant (hom) inherited Homozygous 

PP1627 Multisystem PIEZO1 missense_variant x 3 inherited Heterozygous 

PP1780 Multisystem TCTN2 splice_acceptor inherited Homozygous 

PP0659 Multisystem RAPSN splice_donor_variant inherited Homozygous 

PP0513 Cardiac DNAH11 stop gained inherited Homozygous 

PP1795 Multisystem COQ9 stop_gained (hom) inherited Homozygous 

PP2000 Multisystem RYR1 

stop_gained + 

frameshift_variant inherited Heterozygous 

PP0087 Skeletal DYNC2H1 stop_gained x 2 inherited Heterozygous 

PP1711 Facial SF3B4 frameshift de novo Heterozygous 

PP1750 Cardiac ANKRD11 frameshift_variant de novo Heterozygous 

PP0333 Cardiac GATA4 frameshift_variant de novo Heterozygous 

PP2033 Cardiac CHD7 frameshift_variant de novo Heterozygous 

PP1726 Cardiac TAB2 frameshift_variant de novo Heterozygous 

PP1573 Hydrops KMT2D frameshift_variant de novo Heterozygous 

PP0204 Skeletal ZC4H2 frameshift_variant de novo Heterozygous 

PP2009 Skeletal ARCN1 frameshift_variant de novo Heterozygous 

PP1462 Multisystem BRAF missense de novo Heterozygous 

PP1579 Brain TUBB missense_variant de novo Heterozygous 

PP0184 Cardiac NR2F2 missense_variant de novo Heterozygous 

PP0174 Multisystem NRAS missense_variant de novo Heterozygous 

PP1408 Multisystem SOX9 missense_variant de novo Heterozygous 

PP2015 Multisystem FLNB missense_variant de novo Heterozygous 

PP0792 Skeletal COL1A1 missense_variant de novo Heterozygous 

PP1934 Skeletal COL1A1 missense_variant de novo Heterozygous 

PP1892 Cardiac SOS1 protein_altering_variant de novo Heterozygous 

PP1864 Cardiac KMT2D splice_donor_variant de novo Heterozygous 

PP2039 Hydrops NIPBL stop_gained de novo Heterozygous 

PP1843 Multisystem KMT2D stop_gained de novo Heterozygous 
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Table 2: PAGE cases with diagnostic variants in genes without previous prenatal phenotype descriptions 

AVSD= atrioventricular septal defect; ASD= atrial septal defect 

 

 

Gene Postnatal phenotype Reference [number of 

postnatal cases in cited 

references] 

Prenatal USS PAGE 

findings (PAGE ID) 

ANKRD11  KBG syndrome, Coffin-Siris-like 

syndrome: intellectual disability, 

macrodontia, facial dysmorphisms, 

skeletal anomalies, short stature, 

hearing loss, recurrent middle palatal 

abnormalities 

 [89](29–31)  Atrioventricular canal 

defect (PP1750) 

ARCN1  Severe micrognathia, microcephaly, 

short stature with rhizomelic 

shortening, joint laxity, and mild 

developmental delay and, in some 

cases (each one case):  cardiac defect, 

cleft palate  

 [n=4](32) Absent/Hypoplastic 

radius, ulnar hyoplasia, 

fubular hypoplasia, short 

tibia, femur and humerus 

(PP2009) 

CCDC103 Primary ciliary dyskinesia (upper and 

lower airway infections, sinusitis,  

bronchiectasis, dextrocardia/ situs 

inversus, AVSD, immotile sperm).  

 [14](33–36) Complex univentricular 

heart, double outlet right 

ventricle (DORV), 

transposition great arteries 

(TGA), pulmonary 

stensosis, likely right atrial 

isomerism (PP0390) 

COQ9 Neonatal encephalopathy with  lactic 

acidosis, seizures, global 

developmental delay, hypertrophic 

cardiomyopathy, renal tubular 

dysfunction 

[n=2] (18,37) dilated loops of bowel, 

cardiomegaly, pericardial 

effusion, fetal growth 

restriction, anhydramnios 

(PP1795) 

MYCN Feingold syndrome (oesophogeal and 

duodenal atresias, microcephaly, 

learning disability, digital anomalies: 

brachymesophalang/ syndactyly); 

cardiac defects, renal anomalies,  

[77](38) See Text Box 3 (PP1579) 

NR2F2 AVSD, ASD, hypoplastic left heart 

syndrome, coarctation of the aorta, 

tetralogy of Fallot; congenital 

diaphragmatic hernia 

 [11] (39,40) Abnormal 4 chamber view 

of heart (PP0184) 

TAB2 Frontometaphyseal dysplasia; 

hypertelorism, wide nasal bridge, 

micrognathia, hearing loss, congenital 

heart defects (variable), scoliosis, 

upper limb contractures 

 [15](41–44) Increased NT (8.0 mm) 
PP1726 
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TUBB  Microcephaly, structural brain 

anomalies (dysmorphic basal ganglia, 

abnormalities of 

the corpus callosum, and brainstem 

hypoplasia), learning disability, 

circumferential skin creases, cleft 

palate, short stature 

 [6](45,46) See Text Box 1 

(PP1579) 

ZC4H2 Arthrogryposis multiplex congenita, 

kyphosis/scoliosis, severe learning 

disability 

 [5](47) Fixed extended knees, 

rocker bottom feet, flat 

forehead 

(PP204) 
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Figure legends 

 

Figure 1. A. Number of potential diagnoses per case reviewed by clinical review panel, B. Number of 

potential diagnoses reviewed by the clinical review panel by gene for all genes harbouring a diagnostic 

variant and for all genes considered for more than one proband (regardless of diagnostic status), C. 

Proportion of cases for each phenotypic class for all cases, for cases with a diagnostic variant(s) and for 

cases considered by the clinical review panel with non-diagnostic variants. 

 

Figure 2: Pregnancy outcomes (live birth/miscarriage/termination of pregnancy/stillbirth or neonatal 

death/lost to follow up (LTFU) or unknown) for different phenotypic classes of fetal anomaly.  Total 

number of cases for each group were abdominal (n=29), brain(n=38), cardiac (n= 49), thoracic (n=12), 

facial (n=21), fetal hydrops (n=19), increased nuchal translucency (>4.0mm) (n=88),  renal (n=12), skeletal 

(n=39), spinal (n=8) and complex/multisystem anomalies (n=77) 
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Figure 2: 
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