112 research outputs found

    NmcA Carbapenem-hydrolyzing Enzyme in Enterobacter cloacae in North America1

    Get PDF
    An imipenem-resistant Enterobacter cloacae isolate was recovered from the blood of a patient with a hematologic malignancy. Analytical isoelectric focusing, inhibitor studies, hydrolysis, induction assays, and molecular sequencing methods confirmed the presence of a NmcA carbapenem-hydrolyzing enzyme. This first report of NmcA detected in North America warrants further investigation into its distribution and clinical impact

    Evaluation of the ICT Tuberculosis test for the routine diagnosis of tuberculosis

    Get PDF
    BACKGROUND: Rapid and accurate diagnosis of tuberculosis (TB) is crucial to facilitate early treatment of infectious cases and thus to reduce its spread. To improve the diagnosis of TB, more rapid diagnostic techniques such as antibody detection methods including enzyme-linked immunosorbent assay (ELISA)-based serological tests and immunochromatographic methods were developed. This study was designed to evaluate the validity of an immunochromatographic assay, ICT Tuberculosis test for the serologic diagnosis of TB in Antalya, Turkey. METHODS: Sera from 72 patients with active pulmonary (53 smear-positive and 19 smear-negative cases) and eight extrapulmonary (6 smear-positive and 2 smear-negative cases) TB, and 54 controls from different outpatient clinics with similar demographic characteristics as patients were tested by ICT Tuberculosis test. RESULTS: The sensitivity, specificity, and negative predictive value of the ICT Tuberculosis test for pulmonary TB were 33.3%, 100%, and 52.9%, respectively. Smear-positive pulmonary TB patients showed a higher positivity rate for antibodies than smear-negative patients, but the difference was not statistically significant. Of the eight patients with extrapulmonary TB, antibody was detected in four patients. CONCLUSION: Our results suggest that ICT Tuberculosis test can be used to aid TB diagnosis in smear-positive patients until the culture results are available

    Novel enzyme-linked immunosorbent assay for bivalent ZnT8 autoantibodies

    Get PDF
    Autoantibodies to zinc transporter 8 (ZnT8A) are a powerful diagnostic or predictive marker in type 1 diabetes. However, the widely used current ZnT8A radioligand binding assay (RBA) has proved to be difficult for many laboratories to implement. The aim of this study was the development and characterization of the performance of a novel fluid-phase ZnT8A enzyme-linked immunosorbent assay (ELISA) in relation to standard RBA in type 1 diabetes. Sera from 114 patients with type 1 diabetes and 140 blinded Islet Autoantibody Standardization Program (IASP2012) samples were studied. The sensitivity of ELISA-ZnT8A is equivalent to or slightly higher than that of conventional RBA with similar specificity. Furthermore, the median SD score using this ELISA was significantly higher than that obtained with RBA (P < 0.0001). Multiple logistic regression analysis revealed that ELISA-ZnT8A positivity was associated with younger age of onset (?20 years; OR 15.91, P = 0.0002), acute-onset form of type 1 diabetes (OR 3.38, P = 0.019), and the presence of IA-2 autoantibodies (OR 3.75, P = 0.014). Furthermore, the levels of ELISA-ZnT8A were associated with the reactivity to ZnT8-325Arg, but not ZnT8-325Trp. We conclude that this nonradioactive bivalent ZnT8A assay has high performance and should facilitate large-scale autoantibody screening. Moreover, these results suggest that the humoral autoimmunity against ZnT8 is related to a high risk of faster development of type 1 diabetes and the ZnT8A levels are associated with the known aa325 variants

    Pattern Recognition in Pulmonary Tuberculosis Defined by High Content Peptide Microarray Chip Analysis Representing 61 Proteins from M. tuberculosis

    Get PDF
    Background: Serum antibody-based target identification has been used to identify tumor-associated antigens (TAAs) for development of anti-cancer vaccines. A similar approach can be helpful to identify biologically relevant and clinically meaningful targets in M.tuberculosis (MTB) infection for diagnosis or TB vaccine development in clinically well defined populations. Method: We constructed a high-content peptide microarray with 61 M.tuberculosis proteins as linear 15 aa peptide stretches with 12 aa overlaps resulting in 7446 individual peptide epitopes. Antibody profiling was carried with serum from 34 individuals with active pulmonary TB and 35 healthy individuals in order to obtain an unbiased view of the MTB epitope pattern recognition pattern. Quality data extraction was performed, data sets were analyzed for significant differences and patterns predictive of TB+/2. Findings: Three distinct patterns of IgG reactivity were identified: 89/7446 peptides were differentially recognized (in 34/34 TB+ patients and in 35/35 healthy individuals) and are highly predictive of the division into TB+ and TB2, other targets were exclusively recognized in all patients with TB (e.g. sigmaF) but not in any of the healthy individuals, and a third peptide set was recognized exclusively in healthy individuals (35/35) but no in TB+ patients. The segregation between TB+ and TB2 does no

    Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    Get PDF
    BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB

    What has changed in canine pyoderma? A narrative review

    Get PDF
    Canine pyoderma is a common presentation in small animal practice and frequently leads to prescription of systemic antimicrobial agents. A good foundation of knowledge on pyoderma was established during the 1970s and 1980s, when treatment of infection provided relatively few challenges. However, the ability to treat canine pyoderma effectively is now limited substantially by the emergence of multidrug-resistant, methicillin-resistant staphylococci (MRS) and, in some countries, by restrictions on antimicrobial prescribing for pets. The threat from rising antimicrobial resistance and the zoonotic potential of MRS add a new dimension of public health implications to the management of canine pyoderma and necessitate a revisit and the search for new best management strategies. This narrative review focusses on the impact of MRS on how canine pyoderma is managed and how traditional treatment recommendations need to be updated in the interest of good antimicrobial stewardship. Background information on clinical characteristics, pathogens, and appropriate clinical and microbiological diagnostic techniques, are reviewed in so far as they can support early identification of multidrug-resistant pathogens. The potential of new approaches for the control and treatment of bacterial skin infections is examined and the role of owner education and hygiene is highlighted. Dogs with pyoderma offer opportunities for good antimicrobial stewardship by making use of the unique accessibility of the skin through cytology, bacterial culture and topical therapy. In order to achieve long term success and to limit the spread of multidrug resistance, there is a need to focus on identification and correction of underlying diseases that trigger pyoderma in order to avoid repeated treatment
    corecore