249 research outputs found

    Genetic variation and clonal diversity in introduced populations of Mimulus guttatus assessed by genotyping at 62 single nucleotide polymorphism loci

    Get PDF
    Background: Single nucleotide polymorphisms (SNPs) are increasingly being used to study non-native populations. SNPs are relatively information poor on a per locus basis, but allow genotyping more loci than others markers (e.g., microsatellites) and have the advantage of consistent allele calls between studies.Aims: We investigated the utility of a newly developed set of SNP markers, suitable for high throughput genotyping to characterise genotypic variation and population structure in non-native populations of the facultative clonal herb Mimulus guttatus in the United Kingdom (UK).Methods: We analysed 62 SNP markers and using a high throughput platform genotyped 383 individuals from 10 populations from the native range in North America and 14 populations in the UK.Results: We found wide variation in genotypic diversity within UK populations, indicating reproductive strategies that vary from mostly clonal to mostly sexual. All but one UK population were, on average, more closely related to each other than to North American populations, and the exceptional UK population showed strong affinity to native Alaskan plants.Conclusions: A small number of SNPs can detect patterns of clonality and broad-scale relationships between native and introduced populations. However, elucidating population structure at a finer scale will require genotyping individuals at greater depth

    Cell fueling and metabolic energy conservation in synthetic cells

    Get PDF
    We aim for a blue print for synthesizing complex subcellular systems from molecular components and ultimately for constructing life. Without comprehensive instructions and design principles we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo via complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Here, we describe the simplest pathways for efficient generation of ATP and electrochemical ion gradients. We estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the needs for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow monitoring and tuning of the major physicochemical conditions inside cells

    Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo

    Get PDF
    International audiencePlants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼20%) is not commensurate to the decrease in PSII antenna size (∼70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences

    Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Get PDF
    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R-2 = 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R-2 > 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.Peer reviewe
    corecore