18 research outputs found

    Early rare recurrence of a huge renal solitary fibrous tumor: Case report and review of literature

    Get PDF
    Solitary fibrous tumor (SFT) is a spindle cell neoplasm of mesenchymal origin. First reported in 1931, the pleura is the most common localization of SFT, and it’s exceptionally rare in the kidney. Overall, it represents less than 2% of all soft tissue tumors. In most cases, renal SFT (rSFT) presents with hematuria, flank pain, and a palpable mass. To our knowledge, less than 112 cases of rSFT have been reported. We report a case of rSFT of a 30-year-old male thought to be a renal cell carcinoma (RCC). Radical nephrectomy (RN) was done to remove a large right-sided mass invading the inferior vena cava. Immunohistochemistry confirmed the diagnosis of SFT showing positivity for CD34, CD99, and Bcl-2 protein, with no staining for cytokeratin. A post-operative CT (15 months) showed tumor recurrence in the renal compartment with huge inferior vena cava thrombus extending to the external iliac veins. With this case, we illustrate and highlight the importance of this diagnosis because of the uncertain biological behavior and prognosis of these tumors

    Height, selected genetic markers and prostate cancer risk:Results from the PRACTICAL consortium

    Get PDF
    Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180cm are at a 22% increased risk as compared to men with height o173cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.</p

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∌38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Precision Medicine in Castration-Resistant Prostate Cancer: Advances, Challenges, and the Landscape of PARPi Therapy—A Narrative Review

    No full text
    After recent approvals, poly-adenosine diphosphate [ADP]-ribose polymerase inhibitors (PARPis) have emerged as a frontline treatment for metastatic castration-resistant prostate cancer (mCRPC). Unlike their restricted use in breast or ovarian cancers, where approval is limited to those with BRCA1/2 alterations, PARPis in mCRPC are applied across a broader spectrum of genetic aberrations. Key findings from the phase III PROPEL trial suggest that PARPis’ accessibility may broaden, even without mandatory testing. An increasing body of evidence underscores the importance of distinct alterations in homologous recombination repair (HRR) genes, revealing unique sensitivities to PARPis. Nonetheless, despite the initial effectiveness of PARPis in treating BRCA-mutated tumors, resistance to therapy is frequently encountered. This review aims to discuss patient stratification based on biomarkers and genetic signatures, offering insights into the nuances of first-line PARPis’ efficacy in the intricate landscape of mCRPC

    Expression analysis of bladder tumors for chemotherapeutic drug sensitivity determination

    No full text
    Introduction: Bladder cancer is a multifactorial disease with increasing frequency in the economically developed countries. Aim: The primary endpoint of this study was the evaluation of the genetic image of bladder tumors in connection to common anticancer drugs.Materials and Methods: A total of 50 samples were analyzed. 41 samples were from transitorial cell bladder cancer (stages pTa, pT1 and pT2), 6 samples were from chronic inflammatory process (precancerous) and three - negative controls. The gene expression analysis of 168 genes were carried out with two panels for Cancer Drug Resistance & Metabolism PCR Array, Qiagene (84 genes) and PAHS-507 Z - Human Cancer Drug Targets PCR Array, Qiagene (84 genes).Results: The results showed significant up-regulation of the genes: CYP1A1, CYP3A5, AR, CLPTM1L, CCNE1, MVP, TOP2B, AHR and PPARG in the bladder cancer samples compared to the negative control. A statistically significant difference (p <0.0001) was found in the expression levels of EGFR, ERBB2, ERBB4, ABCC1, ABCC3, ARNT, CYP1A1, CYP3A5, EPHX1, MVP and PPARG genes in muscle invasive (pT2) versus non-invasive bladder tumors (pTa and pT1). These genes are involved in the formation of multi-drug resistance and in the metabolism of steroid hormones, cyclosporins, polycyclic aromatic hydrocarbons, as well as some anticancer drugs like Vincristine, Taxol and Thiopurine. The obtained data show the significance of the genes as possible targets in clinical trials for the treatment of bladder cancer
    corecore