2,075 research outputs found

    Iron Snow in the Martian Core?

    Get PDF
    The decline of Mars' global magnetic field some 3.8–4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe–S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the “iron snow” regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, Ο0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5–2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have Ο0≈10% and snow zones that occupy approximately the top 100 km of the present-day Martian core

    A multiple replica approach to simulate reactive trajectories

    Full text link
    A method to generate reactive trajectories, namely equilibrium trajectories leaving a metastable state and ending in another one is proposed. The algorithm is based on simulating in parallel many copies of the system, and selecting the replicas which have reached the highest values along a chosen one-dimensional reaction coordinate. This reaction coordinate does not need to precisely describe all the metastabilities of the system for the method to give reliable results. An extension of the algorithm to compute transition times from one metastable state to another one is also presented. We demonstrate the interest of the method on two simple cases: a one-dimensional two-well potential and a two-dimensional potential exhibiting two channels to pass from one metastable state to another one

    The connection between radio and high energy emission in black hole powered systems in the SKA era

    Get PDF
    Strong evidence exists for a highly significant correlation between the radio flux density and gamma-ray energy flux in blazars revealed by Fermi. However, there are central issues that need to be clarified in this field: what are the counterparts of the about 30% of gamma-ray sources that are as yet unidentified? Are they just blazars in disguise or they are something more exotic, possibly associated with dark matter? How would they fit in the radio-gamma ray connection studied so far? With their superb sensitivity, SKA1-MID and SKA1-SUR will help to resolve all of these questions. Even more, while the radio-MeV/GeV connection has been firmly established, a radio-VHE connection has been entirely elusive so far. The advent of CTA in the next few years and the expected CTA-SKA1 synergy will offer the chance to explore this connection, even more intriguing as it involves the opposite ends of the electromagnetic spectrum and the acceleration of particles up to the highest energies. We are already preparing to address these questions by exploiting data from the various SKA pathfinders and precursors. We have obtained 18 cm European VLBI Network observations of E>10 GeV sources, with a detection rate of 83%. Moreover, we are cross correlating the Fermi catalogs with the MWA commissioning survey: when faint gamma-ray sources are considered, pure positional coincidence is not significant enough for selecting counterparts and we need an additional physical criterion to pinpoint the right object. It can be radio spectral index, variability, polarization, or compactness, needing high angular resolution in SKA1-MID; timing studies can also reveal pulsars, which are often found from dedicated searches of unidentified gamma-ray sources. SKA will be the ideal instrument for investigating these characteristics in conjunction with CTA. (abridged)Comment: 12 pages, to be published in the proceedings of "Advancing Astrophysics with the Square Kilometre Array", PoS(AASKA14)15

    Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014:Evidence of policy success in improving air quality

    Get PDF
    Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of ‘clean Atlantic background’ air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50ppb per year) in the 1997–2003 period but continues post 2003. A ‘local CO increment’ can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and ‘bottom-up’ inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK

    Prediction of silicate melt viscosity from electrical conductivity : a model and its geophysical implications

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 1685–1692, doi:10.1002/ggge.20103.Our knowledge of magma dynamics would be improved if geophysical data could be used to infer rheological constraints in melt-bearing zones. Geophysical images of the Earth's interior provide frozen snapshots of a dynamical system. However, knowledge of a rheological parameter such as viscosity would constrain the time-dependent dynamics of melt bearing zones. We propose a model that relates melt viscosity to electrical conductivity for naturally occurring melt compositions (including H2O) and temperature. Based on laboratory measurements of melt conductivity and viscosity, our model provides a rheological dimension to the interpretation of electromagnetic anomalies caused by melt and partially molten rocks (melt fraction ~ >0.7).We acknowledge partial support under NASA USRA subaward 02153–04, NSF EAR 0739050, and the ASU School of Earth and Space Exploration (SESE) Exploration Postdoctoral Fellowship Program.2013-12-1

    `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Get PDF
    We report the results of our radio, optical and infra-red studies of a peculiar radio source 4C~35.06, an extended radio-loud AGN at the center of galaxy cluster Abell 407 (z=0.047z=0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ∌\sim1~arcmin size. This system (named the `Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C~35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400~kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107−108)\,\times (10^7 - 10^8) yr. Such ultra-steep spectrum relic radio lobes without definitive hot-spots are rare, and they provide an opportunity to understand the life-cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of the growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.Comment: Published in MNRAS | No. of pages 12, 10 figures and 4 tables. Comments are welcom

    Clinical trials in children: Equity, quality and relevance

    Get PDF
    This thesis investigates the equity, quality and relevance of clinical trials in children to inform better evidence-based child healthcare and outcomes worldwide. A comprehensive review of the literature revealed that despite current initiatives to encourage more trials in children, there is still a paucity of safety and efficacy data of many medicines prescribed in this population. An analysis of trials registered in children showed that disease burden was moderately correlated to trials and this scarcity was particularly prevalent in low-and middle-income countries. We explored the contributory factors to this inequity by conducting a systematic review of stakeholders’ views of trials in children in low-and middle-income countries. In the study evaluating the completeness of protocols of trials in children submitted to ethics committees, we found that protocols are generally comprehensive, but many key domains in trial design and conduct are not reported. Key-informant trial stakeholders who were interviewed proposed strategies to improve trials such as addressing the unique needs of children, embedding trials as part of routine clinical care and streamlining regulatory approvals. Increasing international collaboration, establishing sustainable centralised trials infrastructure, and aligning research to child health priorities were proposed to encourage more high-quality trials that address global child healthcare needs

    A Joint Experimental‐Modeling Investigation of the Effect of Light Elements on Dynamos in Small Planets and Moons

    Get PDF
    We present a joint experimental‐modeling investigation of core cooling in small terrestrial bodies. Significant amounts of light elements (S, O, Mg, Si) may compose the metallic cores of terrestrial planets and moons. However, the effect of multiple light elements on transport properties, in particular, electrical resistivity and thermal conductivity, is not well constrained. Electrical experiments were conducted at 10 GPa and up to 1850 K on high‐purity powder mixtures in the Fe‐S‐O(±Mg, ±Si) systems using the multianvil apparatus and the four‐electrode technique. The sample compositions contained 5 wt.% S, up to 3 wt.% O, up to 2 wt.% Mg, and up to 1 wt.% Si. We observe that above the eutectic temperature, electrical resistivity is significantly sensitive to the nature and amount of light elements. For each composition, thermal conductivity‐temperature equations were estimated using the experimental electrical results and a modified Wiedemann‐Franz law. These equations were implemented in a thermochemical core cooling model to study the evolution of the dynamo. Modeling results suggest that bulk chemistry significantly affects the entropy available to power dynamo action during core cooling. In the case of Mars, the presence of oxygen would delay the dynamo cessation by up to 1 Gyr compared to an O‐free, Fe‐S core. Models with 3 wt% O can be reconciled with the inferred cessation time of the Martian dynamo if the core‐mantle boundary heat flow falls from >2 TW to ~0.1 TW in the first 0.5 Gyr following core formation

    Domain Dynamics of Magnetic Films with Perpendicular Anisotropy

    Full text link
    We study the magnetic properties of nanoscale magnetic films with large perpendicular anisotropy comparing polarization microscopy measurements on Co_28Pt_72 alloy samples based on the magneto-optical Kerr effect with Monte Carlo simulations of a corresponding micromagnetic model. We focus on the understanding of the dynamics especially the temperature and field dependence of the magnetisation reversal process. The experimental and simulational results for hysteresis, the reversal mechanism, domain configurations during the reversal, and the time dependence of the magnetisation are in very good qualitative agreement. The results for the field and temperature dependence of the domain wall velocity suggest that for thin films the hysteresis can be described as a depinning transition of the domain walls rounded by thermal activation for finite temperatures.Comment: 7 pages Latex, Postscript figures included, accepted for publication in Phys.Rev.B, also availible at: http://www.thp.Uni-Duisburg.DE/Publikationen/Publist_Us_R.htm
    • 

    corecore