11 research outputs found

    The role of endogenous neural stem cells (eNSCs) in metabolic syndrome and aging

    Get PDF
    Introduction The adult brain exhibits low regenerative ability. Stem cell-based transplantation approaches have been largely unsuccessful, due to the difficulty to recapitulate the complex cytoarchitecture of the central nervous system (CNS). eNSCs are a new therapeutic option as pharmacological activation and increase of their number in vivo is accompanied by powerful neuroprotection in various disease models. Hes3 is expressed in both proliferating and quiescent NSCs, which makes it a useful biomarker for NSC identification. Direct injections of insulin in the adult brain increase the number of eNSCs and promote rescue of injured neurons via a novel molecular mechanism, the STAT3-Ser/Hes3 Signaling Axis. This molecular pathway with the STAT3-Ser phosphorylation at its core regulates Hes3 and together they form a merging point for several signals including insulin receptor activation. Main aim and Hypothesis Beyond the brain, STAT3-Ser/Hes3 signaling regulates various plastic cell populations in other organs of the endocrine/neuroendocrine system. In the pancreas, Hes3 is expressed in islets cells and regulates their growth, regeneration, and insulin release. Hes3 is also expressed in mouse hypothalamic tanycytes, which are diet responsive cells and play a very crucial role for the communication between the brain and the endocrine system. Also, Hes3 is expressed in the adrenal gland (both in the cortex and medulla); cultured adrenal progenitors express Hes3 and various treatments that induce Hes3 expression promote their growth. Therefore, STAT3-Ser/Hes3 Signaling may be involved in tissue problems that result from metabolic dysfunction. Metabolic syndrome often results in diabetes (Type I, Type II) and insulin resistance, suggesting that eNSCs may be affected by the condition. There is evidence that obesity induces inflammatory reactions in the hypothalamus, leading to NSC loss. However, it is not clear if damage to NSCs is also directly linked to insulin signaling disruption. Results Our results show that various parameters affect Hes3 levels in the brain. Aging decreased Hes3 mRNA expression. Type I diabetes increased Hes3 expression. Type II diabetes decreased Hes3 expression. Thus, we conclude that eNSCs are modulated by diabetes in an age-dependent manner. We also investigated whether common medication for metabolic related dysfunction also affects Hes3 expression in the adult brain. Indeed, our results show that metformin decreases Hes3 expression in the mouse hypothalamus. To address whether metformin has a direct effect on NSCs we treated primary mouse fNSCs with metformin. Metformin decreases cell number, proliferation and affects cell morphology, giving a more differentiated appearance (large, flat cell body with wider projections). Hes3 expression increases significantly at 72 hours of treatment. The metformin result opens the question if the increase in the Hes3 expression is a direct effect of the signal transduction pathways activated by metformin or due to a stress reaction. To address this we treated NSCs with exendin-4, another diabetes drug that we previously showed to both elevate Hes3 expression and cell number using a mouse insulinoma cell line (MIN6). Exendin-4 increases fNSC cell number but it did not affect the morphology. Similar to metformin proliferation was not affected. Hes3 expression increased significantly at 72 hours of treatment as well. This result indicates the distinctive action of the drugs on the STAT3-Ser/Hes3 signaling pathway. Specifically it dissociates Hes3 levels from other cellular parameters. Importantly it shows that two common diabetes medications have very different effects on NSCs. Because Hes3 is strongly regulated by metabolic parameters and medication we addressed potential roles of Hes3 using an established Hes3 null mouse line. Hes3 null mice exhibit no obvious phenotypes under normal conditions. However, we previously showed that when stressed by chemical induced damage, they exhibit low regenerative potential in the pancreas and brain. To identify additional phenotypes, we performed a phenotypic analysis of the Hes3 null mouse line under normal diet and HFD conditions (which induced type II diabetes). We found mild phenotypes that relate to the nervous system, the immune system and metabolism. At the molecular level, Hes3 deletion affects the expression of other genes within the Hes superfamily in the adult mouse brain. However, we did not observe these molecular differences in the HFD condition, suggesting an interplay between metabolic parameters (possibly, circulating insulin) and the regulation of Hes/Hey genes in the brain. Our data suggest a broad range of roles for Hes3, particularly under abnormal conditions. Conclusions Our work establishes that multiple parameters of metabolic state as well as diabetes medication affect Hes3 expression in the brain. Metabolic syndrome is a risk factor for many neurological disorders such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis. It is important to understand at the molecular and cellular level how metabolic dysfunction affects the brain. Here, we introduced a new cellular biomarker and signaling component that is greatly regulated in metabolic dysfunction.:1 Introduction 18 1.1 The ''plastic brain'': Neural Stem Cells, progenitors and precursors 19 1.2 Functional adult neurogenesis 19 1.3 NSCs in conventional and nonconventional regions of the adult brain 20 1.4 Neurodegenerative diseases, cell replacement and endogenous NSCs 21 1.5 The STAT3-Ser/Hes3 signaling axis in NSCs 24 1.6 Beyond the brain: The STAT3-Ser/Hes3 signaling axis operates in plastic cells 27 1.6.1 STAT3-Ser/Hes3 Signaling Axis in the pancreatic islet 27 1.6.2 STAT3-Ser/Hes3 Signaling Axis in the adrenal cortex and medulla 28 1.6.3 STAT3-Ser/Hes3 Signaling Axis in tanycytes of the hypothalamus? 28 1.6.4 STAT3-Ser/Hes3 Signaling: A new molecular component of the neuroendocrine system? 29 1.7 Metabolic syndrome and neurological disease 31 1.7.1 Metabolic dysfunction and Alzheimer's disease 31 1.7.2 Metabolic dysfunction and Parkinson's disease 31 1.7.3 Metabolic dysfunction and Multiple Sclerosis 32 1.7.4 Metabolism and neurodegenerative disease: Are they connected? 32 1.8 Main Aim – Hypothesis 33 2 Materials and Methods 34 2.1 Animal experiments 34 2.1.1 Animal use authorization 34 2.1.2 Genotyping 34 2.1.3 In vivo models 36 2.1.4 In vivo metabolic Analyses 36 2.1.5 Nociception 37 2.1.6 Histology 38 2.1.7 PCR and Real-Time quantitative PCR (qPCR) 39 2.1.8 Western Blot 41 2.2 Mouse phenotyping 42 2.3 Neural stem cell cultures 43 2.3.1 Preparation – Coatings 43 2.3.2 Cell Isolation and Cell Culture 43 2.3.3 Pharmacological Manipulation (Metformin – Exendin-4) 43 2.4 Heat maps 44 2.5 Statistical analyses 44 3 Results 45 3.1 Hes3 is expressed in the mouse brain 46 3.2 Aging and diabetes models alter Hes3 in the brain 48 3.2.1 Hes3 expression decreases with age 48 3.2.2 Pancreatic islet damage by streptozotocin increases Hes3 expression in the brain 48 3.2.3 High Fat Diet reduces Hes3 expression in the brain 49 3.3 Common diabetes medication affect neural stem cells (NSCs) in the brain 53 3.3.1 Metformin decreases Hes3 expression in the brain 53 3.3.2 Metformin opposes growth but increases Hes3 expression in cultured NSCs 54 3.3.3 Exendin-4 promotes growth and increases Hes3 expression in cultured NSCs 54 3.3.4 Metformin and Exendin-4 affect the STAT3-Ser/Hes3 signaling axis 59 3.4 Hes3 null mice exhibit a quasi-normal phenotype 60 3.4.1 Phenotypic Analysis - Normal Diet (ND) 60 3.4.2 Metabolism Relevant Phenotypes – HFD challenge 63 3.4.3 Phenotypic Analysis – Molecular 67 4 DISCUSSION 70 4.1 Diabetes affects the brain 71 4.2 STAT3-Ser/Hes3: a putative mediator 71 4.3 Hes3 is a special member of the Hes/Hey gene family 72 4.4 Patterns of Hes3 expression may be specific to cell type and microenvironment 72 4.5 Metabolic dysfunction and diabetes medication affect brain Hes3 73 4.5.1 Age regulates Hes3 73 4.5.2 Diabetes models regulate Hes3 expression in the brain 74 4.5.3 Metformin regulates Hes3 expression in the brain 74 4.6 Hes3 phenotyping provides clues to Hes3 functions 76 4.7 Hes3 and metabolic dysfunction: Are they connected? 77 5 Conclusions and Future Remarks 79 References 8

    Endocrine pancreas development and regeneration: noncanonical ideas from neural stem cell biology

    Get PDF
    Loss of insulin-producing pancreatic islet ÎČ-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as “on” or “off” but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as “off” or “low” may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways

    Streptozotocin-induced beta-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain

    Get PDF
    Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise;it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced beta-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus

    Hes3 is expressed in the adult pancreatic islet and regulates gene expression, cell growth, and insulin release

    Get PDF
    The transcription factor Hes3 is a component of a signaling pathway that supports the growth of neural stem cells with profound consequences in neurodegenerative disease models. Here we explored whether Hes3 also regulates pancreatic islet cells. We showed that Hes3 is expressed in human and rodent pancreatic islets. In mouse islets it co-localizes with alpha and beta cell markers. We employed the mouse insulinoma cell line MIN6 to perform in vitro characterization and functional studies in conditions known to modulate Hes3 based upon our previous work using neural stem cell cultures. In these conditions, cells showed elevated Hes3 expression and nuclear localization, grew efficiently, and showed higher evoked insulin release responses, compared with serum-containing conditions. They also exhibited higher expression of the transcription factor Pdx1 and insulin. Furthermore, they were responsive to pharmacological treatments with the GLP-1 analog Exendin-4, which increased nuclear Hes3 localization. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed cell growth and affected gene expression as revealed by DNA microarrays. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Hes3 overexpression (using a Hes3-GFP fusion construct) confirmed a role of Hes3 in regulating Pdx1 expression. Hes3 RNA interference reduced evoked insulin release. Mice lacking Hes3 exhibited increased islet damage by streptozotocin. These data suggest roles of Hes3 in pancreatic islet function

    Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination

    Get PDF
    Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research

    The role of endogenous neural stem cells (eNSCs) in metabolic syndrome and aging

    Get PDF
    Introduction The adult brain exhibits low regenerative ability. Stem cell-based transplantation approaches have been largely unsuccessful, due to the difficulty to recapitulate the complex cytoarchitecture of the central nervous system (CNS). eNSCs are a new therapeutic option as pharmacological activation and increase of their number in vivo is accompanied by powerful neuroprotection in various disease models. Hes3 is expressed in both proliferating and quiescent NSCs, which makes it a useful biomarker for NSC identification. Direct injections of insulin in the adult brain increase the number of eNSCs and promote rescue of injured neurons via a novel molecular mechanism, the STAT3-Ser/Hes3 Signaling Axis. This molecular pathway with the STAT3-Ser phosphorylation at its core regulates Hes3 and together they form a merging point for several signals including insulin receptor activation. Main aim and Hypothesis Beyond the brain, STAT3-Ser/Hes3 signaling regulates various plastic cell populations in other organs of the endocrine/neuroendocrine system. In the pancreas, Hes3 is expressed in islets cells and regulates their growth, regeneration, and insulin release. Hes3 is also expressed in mouse hypothalamic tanycytes, which are diet responsive cells and play a very crucial role for the communication between the brain and the endocrine system. Also, Hes3 is expressed in the adrenal gland (both in the cortex and medulla); cultured adrenal progenitors express Hes3 and various treatments that induce Hes3 expression promote their growth. Therefore, STAT3-Ser/Hes3 Signaling may be involved in tissue problems that result from metabolic dysfunction. Metabolic syndrome often results in diabetes (Type I, Type II) and insulin resistance, suggesting that eNSCs may be affected by the condition. There is evidence that obesity induces inflammatory reactions in the hypothalamus, leading to NSC loss. However, it is not clear if damage to NSCs is also directly linked to insulin signaling disruption. Results Our results show that various parameters affect Hes3 levels in the brain. Aging decreased Hes3 mRNA expression. Type I diabetes increased Hes3 expression. Type II diabetes decreased Hes3 expression. Thus, we conclude that eNSCs are modulated by diabetes in an age-dependent manner. We also investigated whether common medication for metabolic related dysfunction also affects Hes3 expression in the adult brain. Indeed, our results show that metformin decreases Hes3 expression in the mouse hypothalamus. To address whether metformin has a direct effect on NSCs we treated primary mouse fNSCs with metformin. Metformin decreases cell number, proliferation and affects cell morphology, giving a more differentiated appearance (large, flat cell body with wider projections). Hes3 expression increases significantly at 72 hours of treatment. The metformin result opens the question if the increase in the Hes3 expression is a direct effect of the signal transduction pathways activated by metformin or due to a stress reaction. To address this we treated NSCs with exendin-4, another diabetes drug that we previously showed to both elevate Hes3 expression and cell number using a mouse insulinoma cell line (MIN6). Exendin-4 increases fNSC cell number but it did not affect the morphology. Similar to metformin proliferation was not affected. Hes3 expression increased significantly at 72 hours of treatment as well. This result indicates the distinctive action of the drugs on the STAT3-Ser/Hes3 signaling pathway. Specifically it dissociates Hes3 levels from other cellular parameters. Importantly it shows that two common diabetes medications have very different effects on NSCs. Because Hes3 is strongly regulated by metabolic parameters and medication we addressed potential roles of Hes3 using an established Hes3 null mouse line. Hes3 null mice exhibit no obvious phenotypes under normal conditions. However, we previously showed that when stressed by chemical induced damage, they exhibit low regenerative potential in the pancreas and brain. To identify additional phenotypes, we performed a phenotypic analysis of the Hes3 null mouse line under normal diet and HFD conditions (which induced type II diabetes). We found mild phenotypes that relate to the nervous system, the immune system and metabolism. At the molecular level, Hes3 deletion affects the expression of other genes within the Hes superfamily in the adult mouse brain. However, we did not observe these molecular differences in the HFD condition, suggesting an interplay between metabolic parameters (possibly, circulating insulin) and the regulation of Hes/Hey genes in the brain. Our data suggest a broad range of roles for Hes3, particularly under abnormal conditions. Conclusions Our work establishes that multiple parameters of metabolic state as well as diabetes medication affect Hes3 expression in the brain. Metabolic syndrome is a risk factor for many neurological disorders such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis. It is important to understand at the molecular and cellular level how metabolic dysfunction affects the brain. Here, we introduced a new cellular biomarker and signaling component that is greatly regulated in metabolic dysfunction.:1 Introduction 18 1.1 The ''plastic brain'': Neural Stem Cells, progenitors and precursors 19 1.2 Functional adult neurogenesis 19 1.3 NSCs in conventional and nonconventional regions of the adult brain 20 1.4 Neurodegenerative diseases, cell replacement and endogenous NSCs 21 1.5 The STAT3-Ser/Hes3 signaling axis in NSCs 24 1.6 Beyond the brain: The STAT3-Ser/Hes3 signaling axis operates in plastic cells 27 1.6.1 STAT3-Ser/Hes3 Signaling Axis in the pancreatic islet 27 1.6.2 STAT3-Ser/Hes3 Signaling Axis in the adrenal cortex and medulla 28 1.6.3 STAT3-Ser/Hes3 Signaling Axis in tanycytes of the hypothalamus? 28 1.6.4 STAT3-Ser/Hes3 Signaling: A new molecular component of the neuroendocrine system? 29 1.7 Metabolic syndrome and neurological disease 31 1.7.1 Metabolic dysfunction and Alzheimer's disease 31 1.7.2 Metabolic dysfunction and Parkinson's disease 31 1.7.3 Metabolic dysfunction and Multiple Sclerosis 32 1.7.4 Metabolism and neurodegenerative disease: Are they connected? 32 1.8 Main Aim – Hypothesis 33 2 Materials and Methods 34 2.1 Animal experiments 34 2.1.1 Animal use authorization 34 2.1.2 Genotyping 34 2.1.3 In vivo models 36 2.1.4 In vivo metabolic Analyses 36 2.1.5 Nociception 37 2.1.6 Histology 38 2.1.7 PCR and Real-Time quantitative PCR (qPCR) 39 2.1.8 Western Blot 41 2.2 Mouse phenotyping 42 2.3 Neural stem cell cultures 43 2.3.1 Preparation – Coatings 43 2.3.2 Cell Isolation and Cell Culture 43 2.3.3 Pharmacological Manipulation (Metformin – Exendin-4) 43 2.4 Heat maps 44 2.5 Statistical analyses 44 3 Results 45 3.1 Hes3 is expressed in the mouse brain 46 3.2 Aging and diabetes models alter Hes3 in the brain 48 3.2.1 Hes3 expression decreases with age 48 3.2.2 Pancreatic islet damage by streptozotocin increases Hes3 expression in the brain 48 3.2.3 High Fat Diet reduces Hes3 expression in the brain 49 3.3 Common diabetes medication affect neural stem cells (NSCs) in the brain 53 3.3.1 Metformin decreases Hes3 expression in the brain 53 3.3.2 Metformin opposes growth but increases Hes3 expression in cultured NSCs 54 3.3.3 Exendin-4 promotes growth and increases Hes3 expression in cultured NSCs 54 3.3.4 Metformin and Exendin-4 affect the STAT3-Ser/Hes3 signaling axis 59 3.4 Hes3 null mice exhibit a quasi-normal phenotype 60 3.4.1 Phenotypic Analysis - Normal Diet (ND) 60 3.4.2 Metabolism Relevant Phenotypes – HFD challenge 63 3.4.3 Phenotypic Analysis – Molecular 67 4 DISCUSSION 70 4.1 Diabetes affects the brain 71 4.2 STAT3-Ser/Hes3: a putative mediator 71 4.3 Hes3 is a special member of the Hes/Hey gene family 72 4.4 Patterns of Hes3 expression may be specific to cell type and microenvironment 72 4.5 Metabolic dysfunction and diabetes medication affect brain Hes3 73 4.5.1 Age regulates Hes3 73 4.5.2 Diabetes models regulate Hes3 expression in the brain 74 4.5.3 Metformin regulates Hes3 expression in the brain 74 4.6 Hes3 phenotyping provides clues to Hes3 functions 76 4.7 Hes3 and metabolic dysfunction: Are they connected? 77 5 Conclusions and Future Remarks 79 References 8

    Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling

    No full text
    The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged diferentiation—spanning over two months—or by shorter protocols that generate immature astrocytes, devoid of salient matureastrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stemcells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating anastrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitmentof the neuroepithelial stem cells. To evaluate the infammatory phenotype, we challenged the hiAstrocytes with the proinfammatory cytokine IL-1ÎČ (interleukin 1 beta) and quantitatively assessed the secretion profle of astrocyte-associatedcytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacityof hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonicaland mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a maturephenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocyteshave a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion,upregulation of ICAM-1 and a cytokine secretion profle on a par with human fetal astrocytes. This protocol generates amultifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.QC 20220503</p

    Continuous Monitoring Reveals Protective Effects of N‐Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit

    No full text
    Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with &lt;2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol–ene–epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell–substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.QC 20211104</p

    Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures

    Get PDF
    Background Neurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood–brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood–brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia. Methods We employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge. Results TAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia. Conclusions Overall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain.QC 20220523</p

    Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery

    Full text link
    Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 () and sensitivity to knockdown, and it can be modeled . Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following knockdown in the -high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the -high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high--expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery
    corecore