92 research outputs found

    Exponential Distribution of Locomotion Activity in Cell Cultures

    Get PDF
    In vitro velocities of several cell types have been measured using computer controlled video microscopy, which allowed to record the cells' trajectories over several days. On the basis of our large data sets we show that the locomotion activity displays a universal exponential distribution. Thus, motion resulting from complex cellular processes can be well described by an unexpected, but very simple distribution function. A simple phenomenological model based on the interaction of various cellular processes and finite ATP production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure

    Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination

    Get PDF
    Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research

    Socio-spatial variations in urban food price and availability and their implications for healthy eating

    No full text
    Available from British Library Document Supply Centre- DSC:DXN057211 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Migration of oligodendrocyte precursors on astrocytes and meningeal cells

    No full text
    Oligodendrocytes populate developing white matter and repopulate demyelinated regions of the CNS by migration. Although little is known about their migratory routes, the environment through which these cells migrate, whether during development, disease, or injury, is packed with astrocytes infiltrated with or bounded by meningeal cells. In the present study, the migration of oligodendrocyte precursors from primary cultures and of the precursor cell lines (CG4 and Oli-neu) on astrocytes and meningeal cells was investigated using tissue culture migration assays and time lapse video microscopy. Oligodendrocyte precursors and the cell lines were found to migrate poorly on astrocytes and meningeal cells compared to migration on laminin even though both astrocytes and meningeal cells express cell surface laminin. The migration-inhibitory activity was not detected in conditioned media derived from either astrocytes or meningeal cells, nor was it detected from matrix deposited by these cells. Analyses of the events immediately following cell-cell contacts revealed that oligodendrocyte precursor-astrocyte contacts were typically long-lasting and appeared to be adhesive, whereas precursor-meningeal cell contacts usually resulted in rapid withdrawal of the precursor cell process. No correlation was found, however, between general adhesiveness and the rate of migration. Our results suggest that both astrocytes and meningeal cells retard migration of oligodendrocyte precursors, consistent with the view that they may impede the movement of oligodendrocyte precursors into CNS lesion sites

    Contact with myelin evokes a release of calcium from internal stores in neonatal rat oligodendrocytes in vitro

    Full text link
    The response of neonatal rat oligodendrocytes to contact with myelin extracts prepared from the central and peripheral nervous system was examined. Contact with either CNS myelin or PNS myelin resulted in collapse of the fine structure of the leading edge of oligodendrocytes in vitro. The collapse of the fine structure of oligodendrocyte processes was preceded by a substantial (approximately fivefold) increase in intracellular free calcium concentration. The calcium concentration increase was due, at least in part, to a release of calcium from internal stores, since it persisted when extracellular calcium was removed by chelation with EGTA. The increase in calcium concentration and the coincident morphological change suggest that oligodendrocytes might be able to recognize and react to specific molecules on the surface of other oligodendrocytes. © 1994 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50411/1/440100307_ftp.pd
    corecore