6 research outputs found

    PITX1 is a regulator of TERT expression in prostate cancer with prognostic power

    Get PDF
    Simple Summary Most prostate cancer is of an indolent form and is curable. However, some prostate cancer belongs to rather aggressive subtypes leading to metastasis and death, and immediate therapy is mandatory. However, for these, the therapeutic options are highly invasive, such as radical prostatectomy, radiation or brachytherapy. Hence, a precise diagnosis of these tumor subtypes is needed, and the thus far applied diagnostic means are insufficient for this. Besides this, for their endless cell divisions, prostate cancer cells need the enzyme telomerase to elongate their telomeres (chromatin endings). In this study, we developed a gene regulatory model based on large data from transcription profiles from prostate cancer and chromatin-immuno-precipitation studies. We identified the developmental regulator PITX1 regulating telomerase. Besides observing experimental evidence of PITX1′s functional role in telomerase regulation, we also found PITX1 serving as a prognostic marker, as concluded from an analysis of more than 15,000 prostate cancer samples. Abstract The current risk stratification in prostate cancer (PCa) is frequently insufficient to adequately predict disease development and outcome. One hallmark of cancer is telomere maintenance. For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this cancer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We investigated if, instead of TERT , transcription factors regulating TERT may suit as prognostic markers. To identify transcription factors regulating TERT , we developed and applied a new gene regulatory modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription factors were predicted as TERT regulators, and most prominently, the developmental morphogenic factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prognosis, and (iii) correlated with telomere length

    VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate cancer

    No full text
    Androgen receptor (AR) is a major driver of prostate cancer initiation and progression. O-GlcNAc transferase (OGT), the enzyme that catalyzes the covalent addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threonine residues of proteins, is often highly expressed in prostate cancer with its expression correlated with high Gleason score. In this study, we have identified an AR and OGT coregulated factor, Vpr (HIV-1) binding protein (VPRBP) also known as DDB1 and CUL4 Associated Factor 1 (DCAF1). We show that VPRBP is regulated by the AR at the transcript level, and stabilized by OGT at the protein level. VPRBP knockdown in prostate cancer cells led to a significant decrease in cell proliferation, p53 stabilization, nucleolar fragmentation, and increased p53 recruitment to the chromatin. In human prostate tumor samples, VPRBP protein overexpression correlated with AR amplification, OGT overexpression, a shorter time to postoperative biochemical progression and poor clinical outcome. In clinical transcriptomic data, VPRBP expression was positively correlated with the AR and also with AR activity gene signatures. IMPLICATIONS: In conclusion, we have shown that VPRBP/DCAF1 promotes prostate cancer cell proliferation by restraining p53 activation under the influence of the AR and OGT

    Increased Cytoplasmic CD138 Expression Is Associated with Aggressive Characteristics in Prostate Cancer and Is an Independent Predictor for Biochemical Recurrence

    No full text
    Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in various normal and malignant tissues. It is of interest due to a possible prognostic effect in tumors and its role as a target for the antibody-drug conjugate indatuximab ravtansine. Here, we analyzed 17,747 prostate cancers by immunohistochemistry. Membranous and cytoplasmic CD138 staining was separately recorded. In normal prostate glands, CD138 staining was limited to basal cells. In cancers, membranous CD138 positivity was seen in 19.6% and cytoplasmic CD138 staining in 11.2% of 12,851 interpretable cases. A comparison with clinico-pathological features showed that cytoplasmic CD138 staining was more linked to unfavorable tumor features than membranous staining. Cytoplasmic CD138 immunostaining was associated with high tumor stage (p<0.0001), high Gleason grade (p<0.0001), nodal metastases (p<0.0001), positive surgical margin (p<0.0001), and biochemical recurrence (p<0.0001). This also holds true for both V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion positive and ERG fusion negative tumors although the cytoplasmic CD138 expression was markedly more frequent in ERG positive than in ERG negative tumors (p<0.0001). Comparison with 11 previously analyzed chromosomal deletions identified a conspicuous association between cytoplasmic CD138 expression and 8p deletions (p<0.0001) suggesting a possible functional interaction of CD138 with one or several 8p genes. Multivariate analysis revealed the cytoplasmic CD138 expression as an independent prognostic parameter in all cancers and in the ERG positive subgroup. In summary, our study indicates the cytoplasmic CD138 expression as a strong and independent predictor of poor prognosis in prostate cancer. Immunohistochemical measurement of CD138 protein may thus—perhaps in combination with other parameters—become clinically useful in the future

    Appendix 1: Published Force Field Parameters

    No full text
    corecore