8 research outputs found

    Investigating spontaneous sister chromatid exchange in uveal melanoma.

    Get PDF
    Sister chromatid exchange (SCE) occurs during S-phase of the cell cycle and is the physical exchange of genetic information between two sister chromatids. Although it has been used for many years as a marker of mutagenesis and genetic instability, the exact mechanism of SCE formation remains to be elucidated. However, it is known to be an end product of the DSB repair pathway, homologous recombination (HR), and defects in various repair proteins have been associated with altered levels of SCE, we therefore investigated the DNA damage repair response in uveal melanoma, using these cells as a model system for SCE formation. Uveal melanoma is a rare but aggressive cancer that arises in the uveal tract of the eye affecting the iris, ciliary body and choroid. It is characterised by non-random chromosomal alterations such as monosomy of chromosome 3 that is associated with metastasis and a poor prognosis. However, random chromosomal aberrations are rare suggesting that these tumours have low genetic instability. In addition these tumours have been found to have reduced levels of spontaneous SCE, which is also consistent with low genetic instability. In general, cancer is associated with high genetic instability and high SCE; this is therefore the only disease state known to date to exhibit this low SCE phenotype. Here, we have found that uveal melanoma cells have high levels of spontaneous DNA damage consistent with a defect in repair. Furthermore, endogenous HR is reduced and we postulate that it is caused by a reduction in the expression of the FA protein F ANCD2, and that this defect causes the reduced SCE frequency in these cells. Consistent with this, complementing uveal melanoma cell lines with F ANCD2 restores the spontaneous levels of SCE. In addition, we have shown that the high chemo-resistance of uveal melanoma to interstrand cross-link inducing agents such as Mitomycin C is due to a defect in metabolism rather than a defect in DNA repair

    Use of the HPRT gene to study nuclease-induced DNA double-strand break repair

    Get PDF
    © The Authors 2015. Published by Oxford University Press. Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic nonhomologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.This work was supported in part by the Biotechnology and Biological Research Council (BB/H003371/1 to A.C.G.P.), the Medical Research Council (MC_PC_12003 to T.C.H.), Cancer Research UK (C5255/A15935 to S.A.) and University of Oxford (Clarendon Scholarship to S.A.). Funding to pay the Open Access publication charges for this article was provided by the Research Councils UK open access fund

    Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib

    Get PDF
    Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents

    Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase

    Get PDF
    Poly(ADP-ribosylation) of proteins following DNA damage is well studied and the use of poly(ADP-ribose) polymerase (PARP) inhibitors as therapeutic agents is an exciting prospect for the treatment of many cancers. Poly(ADP-ribose) glycohydrolase (PARG) has endo-and exoglycosidase activities which can cleave glycosidic bonds, rapidly reversing the action of PARP enzymes. Like addition of poly(ADP-ribose) (PAR) by PARP, removal of PAR by PARG is also thought to be required for repair of DNA strand breaks and for continued replication at perturbed forks. Here we use siRNA to show a synthetic lethal relationship between PARG and BRCA1, BRCA2, PALB2, FAM175A (ABRAXAS) and BARD1. In addition, we demonstrate that MCF7 cells depleted of these proteins are sensitive to Gallotannin and a novel and specific PARG inhibitor PDD00017273. We confirm that PARG inhibition increases endogenous DNA damage, stalls replication forks and increases homologous recombination, and propose that it is the lack of homologous recombination (HRR) proteins at PARG inhibitor-induced stalled replication forks that induces cell death. Interestingly not all genes that are synthetically lethal with PARP result in sensitivity to PARG inhibitors, suggesting that although there is overlap, the functions of PARP and PARG may not be completely identical. These data together add further evidence to the possibility that single treatment therapy with PARG inhibitors could be used for treatment of certain HRR deficient tumours and provide insight into the relationship between PARP, PARG and the processes of DNA repair

    Increased Replication Stress Determines ATR Inhibitor Sensitivity in Neuroblastoma Cells

    No full text
    Despite intensive high-dose multimodal therapy, high-risk neuroblastoma (NB) confers a less than 50% survival rate. This study investigates the role of replication stress in sensitivity to inhibition of Ataxia telangiectasia and Rad3-related (ATR) in pre-clinical models of high-risk NB. Amplification of the oncogene MYCN always imparts high-risk disease and occurs in 25% of all NB. Here, we show that MYCN-induced replication stress directly increases sensitivity to the ATR inhibitors VE-821 and AZD6738. PARP inhibition with Olaparib also results in replication stress and ATR activation, and sensitises NB cells to ATR inhibition independently of MYCN status, with synergistic levels of cell death seen in MYCN expressing ATR- and PARP-inhibited cells. Mechanistically, we demonstrate that ATR inhibition increases the number of persistent stalled and collapsed replication forks, exacerbating replication stress. It also abrogates S and G2 cell cycle checkpoints leading to death during mitosis in cells treated with an ATR inhibitor combined with PARP inhibition. In summary, increased replication stress through high MYCN expression, PARP inhibition or chemotherapeutic agents results in sensitivity to ATR inhibition. Our findings provide a mechanistic rationale for the inclusion of ATR and PARP inhibitors as a potential treatment strategy for high-risk NB
    corecore