34 research outputs found

    Female and male Leach\u27s Storm Petrels (Hydrobates leucorhous) pursue different foraging strategies during the incubation period

    Get PDF
    Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach\u27s Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult bodyweight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely, as defined by behavioural categories derived from a hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation

    Tapping into non-English-language science for the conservation of global biodiversity.

    Get PDF
    The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Future directions in conservation research on petrels and shearwaters

    Get PDF
    Shearwaters and petrels (hereafter petrels) are highly adapted seabirds that occur across all the world's oceans. Petrels are a threatened seabird group comprising 124 species. They have bet-hedging life histories typified by extended chick rearing periods, low fecundity, high adult survival, strong philopatry, monogamy and long-term mate fidelity and are thus vulnerable to change. Anthropogenic alterations on land and at sea have led to a poor conservation status of many petrels with 52 (42%) threatened species based on IUCN criteria and 65 (52%) suffering population declines. Some species are well-studied, even being used as bioindicators of ocean health, yet for others there are major knowledge gaps regarding their breeding grounds, migratory areas or other key aspects of their biology and ecology. We assembled 38 petrel conservation researchers to summarize information regarding the most important threats according to the IUCN Red List of threatened species to identify knowledge gaps that must be filled to improve conservation and management of petrels. We highlight research advances on the main threats for petrels (invasive species at breeding grounds, bycatch, overfishing, light pollution, climate change, and pollution). We propose an ambitious goal to reverse at least some of these six main threats, through active efforts such as restoring island habitats (e.g., invasive species removal, control and prevention), improving policies and regulations at global and regional levels, and engaging local communities in conservation efforts

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Evaluation and recommendations for greater accessibility of colour figures in ornithology

    No full text
    People who are colour-blind or have some form of colour vision deficiency form an invisible minority and scientists should strive to be as inclusive as possible. We reviewed 2873 figures published in 2019 from 1031 scientific papers in 27 ornithological journals to determine those that were colour-blind compatible, and those that were black-and-white printer friendly. About 26% of the published figures were in colour, and while most were colour-blind compatible, only ~ 60% of them were black-and-white printer friendly. Ensuring figures in all forms of scientific communication can be interpreted by readers who are colour-blind, and can be printed in black-and-white will improve the accessibility of ornithological research.This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    American Dippers indicate contaminant biotransport by Pacific salmon

    No full text
    Migrating salmon can increase productivity in Pacific Northwestern streams and lakes through the deposition of nutrients from their decomposing carcasses after spawning. Several studies also report simultaneous biotransport of persistent organic pollutants that have contaminated lake food webs, although no similar effect has been shown conclusively in rivers. We tested the prediction that salmon enhance contaminants in river food webs using the American dipper (Cinclus mexicanus), an aquatic songbird and a recognized indicator of stream quality. Over 3 years, we analyzed 29 dipper eggs and aquatic invertebrate samples from 14 different rivers in 10 catchments in southern British Columbia, Canada to assess whether variations in autumn spawning density of Pacific salmon were reflected in dipper egg contamination or stable carbon and nitrogen isotopes. δ13C isotope signatures, but not δ15N, in aquatic invertebrates and dipper eggs increased among catchments in proportion to the average density of spawning salmon. Concentrations of brominated flame retardants (PBDEs), dichlorodiphenyltrichloroethane metabolites (DDTs), and chlordane compounds were related in part to the δ13C measure of salmon density, but mercury, chlorobenzenes, and polychlorinated biphenyls (PCBs) were explained better by dipper trophic level. We conclude that spawning Pacific salmon result in the increased availability of salmon fry as dipper prey and salmon are a significant source of PBDEs, DDTs, and chlordanes to river ecosystems. However, contrary to lake studies, postspawn concentrations of legacy PCBs in river birds, even in salmon-rich rivers, were not significantly higher than would be expected from atmospheric deposition alone. We recommend using δ13C isotopes to trace salmon-derived lipids which may persist over winter particularly in rivers, and are potentially a better reflection of lipophilic contaminant transfer

    Apparent survival of adult Leach's Storm-petrels (Oceanodroma leucorhoa) breeding on Bon Portage Island, Nova Scotia

    No full text
    Populations of Leach's Storm-petrel (Oceanodroma leucorhoa; hereafter storm-petrel), one of the most widespread procellariiform seabirds in the world, appear to be declining in many parts of their breeding range. As part of a regional effort to assess status of storm-petrel colonies in eastern North America, we estimated apparent survival and recapture probabilities from 2009 to 2014 for adults on Bon Portage Island (43° 28' N, 65° 44' W), located off the southwestern coast of Nova Scotia, Canada. Mean annual survival estimated for this colony was low (0.78 ± 0.04) compared with other procellariiforms, e.g., > 0.90 for many albatrosses and petrels. Storm-petrels that were fitted with very high frequency (VHF) radio tags had an average of 0.11 ± 0.05 (95% confidence interval [CI] = 0.01 to 0.21) higher survival probabilities than those that were not, possibly because VHF tags were attached to known, established breeders. There was weak evidence that survival was reduced by an average of 0.07 ± 0.04 for storm-petrels in study plots that were occupied by Herring Gulls (Larus argentatus) and their chicks; however, this result was not statistically significant (95% CI: -0.15 to 0.02). Low adult survival is an early indication that this important colony may be under stress. However, further work is needed to determine if the colony is indeed declining and, if so, to determine the cause(s) of the decline so that they may be addressed

    Foraging movements of Leach's storm-petrels Oceanodroma leucorhoa during incubation

    No full text
    Knowledge of foraging movements during the breeding season is key to understanding energetic stresses faced by seabirds. Using archival light loggers (geolocators), a Bayesian state–space model, and stable isotope analysis, we compared foraging movements of Leach's storm-petrels Oceanodroma leucorhoa during their incubation periods in 2012 and 2013. Data were collected from two colonies, Bon Portage Island and Country Island, which are 380 km apart along the coast of Nova Scotia, Canada. Based on allometry for procellariiform mass, predicted foraging ranges for Leach's storm-petrels are 200 km; however, observed maximum distances from the colony were 3 to 5 times that. Storm-petrels from Country Island travelled 1015 ± 238 km southeast to the Laurentian fan and south of the Grand Banks whereas storm-petrels from Bon Portage Island travelled 613 ± 167 km southeast, beyond the continental slope, east of Georges Bank. The average distance travelled in a return trip was 2287 ± 603 km and 1303 ± 351 km for Country Island and Bon Portage Island, respectively. There were no differences between years in cumulative distances travelled within islands, but foraging trips did not last as long in 2013 (4.7 ± 1.5 d) as they did in 2012 (6.2 ± 2.1 d). Stable isotope analyses indicated that, during the incubation period, prey items from Country Island were from higher trophic levels and possibly had higher energy content than those from Bon Portage Island, perhaps explaining the more distant and longer foraging trips for Country Island birds.10 page(s
    corecore