30 research outputs found
The use of out-of-plane high Z patient shielding for fetal dose reduction in computed tomography: Literature review and comparison with Monte-Carlo calculations of an alternative optimisation technique.
When performing CT examinations on pregnant patients, great effort should be dedicated towards optimising the exposure of the mother and the conceptus. For this purpose, many radiology departments use high-Z garments to be wrapped around the patient's lower abdomen for out-of-plane organ shielding to protect the fetus. To assess their current protection efficiency, we performed a literature review and compared the efficiencies mentioned in the literature to Monte-Carlo calculations of CT protocols for which the overall scan length was reduced. We found 11 relevant articles, all of them reporting uterus exposure due to CT imaging performed for exclusion of pulmonary embolism, one of the leading causes of peripartum deaths in western countries. Uterus doses ranged between 60 and 660âŻÂ”Gy per examination, and relative dose reductions to the uterus due to high-Z garments were between 20 and 56%. Calculations showed that reducing the scan length by one to three centimetres could potentially reduce uterus dose up to 24% for chest imaging, and even 47% for upper abdominal imaging. These dose reductions were in the order of those achieved by high-Z garments. However, using the latter may negatively influence the diagnostic image quality and even interfere with the automatic exposure control system thus increasing patient dose if positioned in the primary beam, for example in the overranging length in helical acquisition. We conclude that efforts should be concentrated on positioning the patient correctly in the gantry and optimising protocol parameters, rather than using high-Z garments for out-of-plane uterus shielding
Vascular Abnormalities Detected with Chest CT in COVID-19: Spectrum, Association with Parenchymal Lesions, Cardiac Changes, and Correlation with Clinical Severity (COVID-CAVA Study).
Although vascular abnormalities are thought to affect coronavirus disease 2019 (COVID-19) patients' outcomes, they have not been thoroughly characterized in large series of unselected patients. The Swiss national registry coronavirus-associated vascular abnormalities (CAVA) is a multicentric cohort of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who underwent a clinically indicated chest computed tomography (CT) aiming to assess the prevalence, severity, distribution, and prognostic value of vascular and non-vascular-related CT findings. Clinical outcomes, stratified as outpatient treatment, inpatient without mechanical ventilation, inpatient with mechanical ventilation, or death, will be correlated with CT and biological markers. The main objective is to assess the prevalence of cardiovascular abnormalities-including pulmonary embolism (PE), cardiac morphology, and vascular congestion. Secondary objectives include the predictive value of cardiovascular abnormalities in terms of disease severity and fatal outcome and the association of lung inflammation with vascular abnormalities at the segmental level. New quantitative approaches derived from CT imaging are developed and evaluated in this study. Patients with and without vascular abnormalities will be compared, which is supposed to provide insights into the prognostic role and potential impact of such signs on treatment strategy. Results are expected to enable the development of an integrative score combining both clinical data and imaging findings to predict outcomes
Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms
The discrepancy between the results of covariant and non-covariant one-loop
calculations for higher-spin fields in quantum cosmology is analyzed. A
detailed mode-by-mode study of perturbative quantum gravity about a flat
Euclidean background bounded by two concentric 3-spheres, including
non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes
in agreement with the covariant Schwinger-DeWitt method. This calculation
provides the generalization of a previous analysis of fermionic fields and
electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a
well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50,
pages 6329-6337, November 1994. The authors apologize for the delay in
circulating the paper, due to technical problems now fixe
Coexistence of 'alpha+ 208Pb' cluster structures and single-particle excitations in 212Po
Excited states in 212Po have been populated by alpha transfer using the
208Pb(18O,14C) reaction at 85MeV beam energy and studied with the EUROBALL IV
gamma multidetector array. The level scheme has been extended up to ~ 3.2 MeV
excitation energy from the triple gamma coincidence data. Spin and parity
values of most of the observed states have been assigned from the gamma angular
distributions and gamma -gamma angular correlations. Several gamma lines with
E(gamma) < 1 MeV have been found to be shifted by the Doppler effect, allowing
for the measurements of the associated lifetimes by the DSAM method. The
values, found in the range [0.1-0.6] ps, lead to very enhanced E1 transitions.
All the emitting states, which have non-natural parity values, are discussed in
terms of alpha-208Pb structure. They are in the same excitation-energy range as
the states issued from shell-model configurations.Comment: 21 pages, 19 figures, corrected typos, revised arguments in Sect.
III
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning
Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a caseâcontrol design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (Nâ=â3,343; ageâ=â10â25 years; global sitesâ=â32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59â0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.NWORubicon 019.201SG.022Advanced Behavioural Research MethodsHealth and Well-bein
Sound-field reproduction systems using fixed-directivity loudspeakers
Sound reproduction systems using open arrays of loudspeakers in rooms suffer from degradations due to room reflections. These reflections can be reduced using pre-compensation of the loudspeaker signals, but this requires calibration of the array in the room, and is processor-intensive. This paper examines 3D sound reproduction systems using spherical arrays of fixed-directivity loudspeakers which reduce the sound field radiated outside the array. A generalized form of the simple source formulation and a mode-matching solution are derived for the required loudspeaker weights. The exterior field is derived and expressions for the exterior power and direct to reverberant ratio are derived. The theoretical results and simulations confirm that minimum interference occurs for loudspeakers which have hyper-cardioid polar response
Sound reproduction systems using variable-directivity loudspeakers
Sound reproduction systems using omnidirectional loudspeakers produce reflections from room surfaces which interfere with the desired sound field within the array. While active compensation systems can reduce the reverberant level, they require calibration in each room and are processor-intensive. Directional loudspeakers allow the direct to reverberant level to be improved within the array, but still produce a finite exterior field which reflects from the room surfaces. The use of variable directivity loudspeakers allows the exterior field to be eliminated at low frequencies by implementing the KirchhoffâHelmholtz integral equation. This paper investigates the performance of variable-directivity arrays in reducing reverberant levels and compares the results with those derived in a previous paper for fixed-directivity arrays. The results presented may have some impact on the design of commercial multi-channel systems for sound reproduction