124 research outputs found

    Taming the beast: a revised classification of Cortinariaceae based on genomic data

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/.Abstract: Family Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.Peer reviewedFinal Published versio

    The Security Testbed for the Purposes of the ITS-G5 Communication Attacks Prevention

    Get PDF
    Secure communication in the Intelligent Transport System (ITS) plays a crucial role in vehicular safety. Security threats can be an unwanted cause of congestions and attacks. In this paper, first, the security threats in ITS are described and discussed. Second, a concept of the security testbed for ITS-G5 communication was presented. Its purpose is to test or verify the security threats for the machine-to-machine communication in the ITS. The testbed is composed of two parts. The first part represents the vehicle, and the second part is the Road-Side Unit (RSU) or the Road-vehicle unit (RVU). The testbed contains Arduino-type modules, SPI interface to CAN bus converter, and ELM 327 diagnostic tool supporting all communication protocols of the OBD standard. The simulator presented in this article was practically implemented and the functionality verified by experimental testing. Finally, a message for remote speed limiting was implemented on the testbed for further security testing.Peer reviewe

    Hyb-Seq for flowering plant systematics

    Get PDF
    High-throughput DNA sequencing (HTS) presents great opportunities for plant systematics, yet genomic complexity needs to be reduced for HTS to be effectively applied. We highlight Hyb-Seq as a promising approach, especially in light of the recent development of probes enriching 353 low-copy nuclear genes from any flowering plant taxon

    Boxnep - модульный подводный робот перспективных технологий

    Get PDF
    The article discusses the relevance of the underwater vehicles are able to solve a wide range of problems. The decision puts in a basis of the research is designing a modular underwater robot. It allows to make a mounting of various equipment and testing it in the water medium. The paper deals with the concept of the robot and its characteristics

    Influence of heat treatment-induced residual stress on residual fatigue life of railway axles

    Get PDF
    Assessment of residual fatigue life of railway axles commonly does not include effect of residual stress. This paper presents advanced methodology for estimation of residual fatigue life of railway axles considering not only external loading but also internal residual stresses. The studied axles made of the EA4T steel were treated by induction hardening in order to generate very high compressive residual stress in the surface layer of the axle. Such residual stress has positive effect on behaviour of surface defects and leads to fatigue crack retardation or even crack arrest and, consequently, to immense prolongation of residual fatigue life. Experimentally measured data of residual stress were implemented in a numerical model in order to determine the true stress state in the axle. The model included a crack and took the effects of bending, press fit and residual stress into account. Residual fatigue life was calculated for various starting crack lengths based on the experimentally determined da/dN-ΔK curves for various load ratios. Finally, the results for axles hardened by standard method and by induction hardening were compared with residual fatigue lives obtained experimentally from fatigue tests on real railway axles with artificial cracks. The calculated values were conservative with good agreement with experimental dat

    Fatty Acid Elongation in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma

    Get PDF
    Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease

    A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering

    Get PDF
    Sequencing of target-enriched libraries is an efficient and cost-effective method for obtaining DNA sequence data from hundreds of nuclear loci for phylogeny reconstruction. Much of the cost of developing targeted sequencing approaches is associated with the generation of preliminary data needed for the identification of orthologous loci for probe design. In plants, identifying orthologous loci has proven difficult due to a large number of whole-genome duplication events, especially in the angiosperms (flowering plants).We used multiple sequence alignments from over 600 angiosperms for 353 putatively single-copy protein-coding genes identified by the One Thousand Plant Transcriptomes Initiative to design a set of targeted sequencing probes for phylogenetic studies of any angiosperm group. To maximize the phylogenetic potential of the probes, while minimizing the cost of production, we introduce a k-medoids clustering approach to identify the minimum number of sequences necessary to represent each coding sequence in the final probe set. Using this method, 5–15 representative sequences were selected per orthologous locus, representing the sequence diversity of angiosperms more efficiently than if probes were designed using available sequenced genomes alone. To test our approximately 80,000 probes, we hybridized libraries from 42 species spanning all higher-order groups of angiosperms, with a focus on taxa not present in the sequence alignments used to design the probes. Out of a possible 353 coding sequences, we recovered an average of 283 per species and at least 100 in all species. Differences among taxa in sequence recovery could not be explained by relatedness to the representative taxa selected for probe design, suggesting that there is no phylogenetic bias in the probe set. Our probe set, which targeted 260 kbp of coding sequence, achieved a median recovery of 137 kbp per taxon in coding regions, a maximum recovery of 250 kbp, and an additional median of 212 kbp per taxon in flanking non-coding regions across all species. These results suggest that the Angiosperms353 probe set described here is effective for any group of flowering plants and would be useful for phylogenetic studies from the species level to higher-order groups, including the entire angiosperm clade itself

    Raman Scattering:From Structural Biology to Medical Applications

    Get PDF
    This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed
    corecore