
The Security Testbed for the Purposes of the
ITS-G5 Communication Attacks Prevention

Jiri Pokorny1,2, Pavel Seda1, Jan Dvorak1, Lukas Malina1, Zdenek Martinasek1
1Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology

2Unit of Electrical Engineering, Tampere University, Korkeakoulunkatu 7, 337 20 Tampere, Finland
�Contact author’s e-mail: jiri.pokorny@vut.cz

Abstract—Secure communication in the Intelligent Transport
System (ITS) plays a crucial role in vehicular safety. Security
threats can be an unwanted cause of congestions and attacks. In
this paper, first, the security threats in ITS are described and
discussed. Second, a concept of the security testbed for ITS-G5
communication was presented. Its purpose is to test or verify the
security threats for the machine-to-machine communication in
the ITS. The testbed is composed of two parts. The first part
represents the vehicle, and the second part is the Road-Side
Unit (RSU) or the Road-vehicle unit (RVU). The testbed contains
Arduino-type modules, SPI interface to CAN bus converter, and
ELM 327 diagnostic tool supporting all communication protocols
of the OBD standard. The simulator presented in this article
was practically implemented and the functionality verified by
experimental testing. Finally, a message for remote speed limiting
was implemented on the testbed for further security testing.

Index Terms—Intelligent transport system, ITS-G5, vehicle,
simulator, OBD, CAN, Arduino.

I. INTRODUCTION

Increasing vehicular traffic and pollution in urban areas was
one of the motivators for designing the Intelligent Transport
System (ITS) [1]. The goal of the ITS is to reduce traffic
congestion by sharing the state of the surrounding traffic and
events to other nearby vehicles. In the last decade, this system
has been adopted by many different modes of transport.

The ITS is facing many security threats due to its open
nature. Major accidents, loss of life, and property damage
might be a consequence of security breaches. Various secu-
rity properties can mitigate these threats. Standard properties
defined by European Telecommunications Standards Institute
(ETSI) are availability, integrity, authenticity, confidentiality,
non-repudiation, and accountability [2]. The current solutions
should be developed in order to provide the above require-
ments and prevent well-known security threats. More about the
security of hybrid vehicular communication, including ITS-
G5, is discussed in [3].

Currently, the ITS-G5 employs I2V (Infrastructure to Vehi-
cle) or V2I (Vehicle to infrastructure) communications [4].
These two types of communications are most frequently
sending warning or notification messages that are displayed
in the car or at the computer of the infrastructure operator [5].
These messages usually include weather information [4], [5],
service alerts [6] and many more use case. However, in use
cases with serious warnings and notifications exchange, the
security of the ITS-G5 communication should be a priority.
For example, consider the use case of speed limiting the cars

violating the rules. In this case, it is not only about notification,
but the infrastructure or the integrated rescue system services
needs to send an ITS-G5 message that is strongly secured by
default.

This paper is organized as follows. Section II highlights
the security concepts based on the PKI deployment and ITS-
G5 attack classes. Section III describes OBD-II and other
technical aspects of how the communication is integrated into
the vehicles. Section IV describes the implemented security
testbed for secured ITS-G5 communication using an OBD-
II simulator implemented in Arduino. Finally, Section V
concludes the work and summarizes the results from security
analysis and the provided security testbed implementation.

A. Related Works

Nowadays, many scientific and research groups engage
in modern technologies for wireless connection of vehicles,
pedestrians, and infrastructure. The implementation of this
communication often consists of communication modules with
closed software, non-modular, unsecured, and supporting only
one type of wireless communication, which can be disadvan-
tageous and inappropriate. Several professional articles have
dealt with this issue in recent years.

In [6], the authors present a study of several scenarios
dealing with communication technology for the transmission
of alerts and road information, or traffic information between
vehicles. Cooperative Intelligent Transportation Systems (C-
ITS) communication technology using the ITS-G5 protocol
was used to transfer information. The system has been prac-
tically tested among vehicles in Finnish weather conditions.
Their system has a minimum network latency and packet loss
and meets the complete system requirements for generating
alerts.

The authors in [4] compare the ITS-G5 communication
technology with 5G test network (5GTN) technology. The
authors used these technologies to transmit alerts and road
information between vehicles and broadcasting stations in real-
time. The article compares these technologies using User Data-
gram Protocol (UDP) or Transport layer Connection Protocol
(TCP) transport protocols.

The article [5] deals with the integration of ITS-G5 technol-
ogy with 5G technology to create an advanced heterogeneous
testbed. The authors state that this testbed is used to create
an architecture for Vehicular Ad hoc Networks (VANETs),
providing real-time intelligent traffic services (road condition



alerts and traffic information). The presented system was
verified on a test track.

Finally, the authors in [7] present a new toll system solution
using ITS-G5 technology. Secure communication meeting
the basic security requirements is used to perform the toll
transaction. The security of the proposed method is tested
using the Automated Validation of Internet Security Protocols
and Applications (AVISPA) tool. The architecture proposed
by the authors requires adequate resources that are suitable
for V2I communication.

None of the mentioned articles deal with the security aspects
of ITS-G5 communication between devices. In this paper,
we investigate such needs using the provided security testbed
focused on the security aspects of communication ITS-G5.
Further, the ITS-G5 testbed verifies the aspects of communi-
cation and highlights the needs that have to be considered for
the secured communication.

II. ON SECURITY IN ITS

Emerging C-ITS safety applications depend on reliable and
trustworthy data communication interfaces such as V2X, V2I,
and V2V. The European Telecommunications Standards Insti-
tute (ETSI) currently releases standards that define a security
framework for C-ITS, mainly based on using PKI (Public
Key Infrastructure). This approach solely solves trust, data
integrity and provides a certain level of user privacy by using
pseudonyms in certificates. Regularly changing the pseudonym
IDs in V2X communications can prevent user profiling and
tracking. Nevertheless, data confidentiality is very limited in
C-ITS schemes.

A. Deploying PKI in ITS-G5 Security

The ITS-G5 communication technology is mainly decen-
tralized. Thus symmetric cryptography cannot be directly
deployed to secure transmitted data. Further, the European
Commission is working on a single pan-European trust model,
which is based on the Public Key Infrastructure (PKI) [2]
principle. The PKI hierarchy contains a certification authority
(CA) that releases certificates with public keys that are then
used to check digital signatures of the Cooperative Aware-
ness Message (CAM), Decentralized Environmental Notifi-
cation Message (DENM), or Infrastructure to Vehicle Infor-
mation Message (IVIM) messages. Public keys pseudonyms
are assigned by the Pseudonym Certificate Authority (PCA).
Pseudonymous certificates are used to secure data integrity
and authenticity and prevent tracking and profiling a specific
vehicle and its users. A vehicle hidden behind a pseudonym
can only be identified by a relevant authority that issued
the vehicle pseudonym or by the Long Term Certification
Authority (LTCA) authority that equips the vehicle by a long-
term Long Term Certificate (LTC) certificate. These LTC
certificates are used to authenticate with the PCA authority
and are applied by car manufacturers. LTC is valid for the life
of the car. Each vehicle has several pseudonyms with various
validity periods. This approach prevents finding connections
between pseudonyms and a specific vehicle. Nevertheless, the

vehicle must be online and connected to the PCA backend
server, assigning and changing pseudonyms.

On the top of the PKI hierarchy is the Root Certificate
Authority (RCA). It ensures compliance with the rules and
issues certificates to subordinate authorities (LTCA and PCA).
Governments or private organizations can run these RCAs, but
their number is very limited [8]. Nonetheless, complete (full)
anonymity is against users’ responsibility and general security.
Therefore, the possibility of withdrawing the certificate and
removing the vehicle from further communication must be
maintained in some serious incidents.

B. ITS-G5 Attack Classes

ITS-G5 communication technology exchanges usually sen-
sitive data. Messages such as CAM, DENM, IVIM or safety
warning messages can be considered as the most sensitive
and essential for secure their integrity and authenticity. CAM
messages transmitted by a On-Board Unit (OBU) located in
a moving vehicle may cause a non-intentional determination
of the direction, speed, time, and location of the vehicle. An
attacker can then easily track a specific vehicle (an user).
Messages DENM or IVIM, which are transmitted by Road-
Side Unit (RSU) or Road-Vehicle Unit (RVU) and serve for
the protection of the driver from danger, can be easily misused,
and the attacker can send those fake messages. For example,
the vehicle can be forced to evade a maneuver that will cause a
genuine accident. The attacker can also take complete control
of the traffic or completely disables communication in ITS-G5
technology. Thus, the ITS-G5 communication technology can
be exposed to various security threats and possible attacks that
are categorized as follows [9]:

• Network Attacks – these attacks on ITS-G5 communi-
cation between RSU or RVU and OBU try to disturb or
denial services. For example, these attacks can be (D)DoS
attacks.

• Application Attacks – these attacks try to tamper or
modify exchanged messages in ITS-G5 communication
to cause damage, accidents, and inconvenience to valid
users.

• Timing Attacks – attackers insert a command into the
message (CAM, DENM, IVIM), causing a delay in the
delivery of the message. The attacker does not violate
the content of the message in any way but only causes
that the message is not delivered at a required time. The
most time-prone are security messages where delay (even
minimal) may cause that messages lose their relevance,
such as break alerts.

• Social Attacks – some malicious users may send offen-
sive, vulgar messages to other vehicles. These messages
can disturb the driver that may even cause a vehicle
accident.

• Monitoring Attacks – attackers monitor traffic across
the network and eavesdrops on communications between
vehicles and the infrastructure. If an attacker discovers
any helpful information, she/he can use it for his/her
benefit or pass it on to another person. The potential



victim can be the police, who communicate through the
network and plan interventions or operations. An attacker
could eavesdrop on the entire communication and then
warn specific parties [9].

III. ON ITS-5G COMMUNICATION PROTOCOLS AND
INTERFACES

This section presents the standards for OBD and OBD-II
that are used to connect diagnostic equipment and monitor or
adjust electrical and electronic parts of the car. Further, an
explanation of the core principles of communication between
the electronic parts of the car via the CAN bus is provided, and
the different communication protocols of the OBD-II standard
are described.

A. OBD (On-Board Diagnostics)

On-Board Diagnostics (OBD) is a standard that was orig-
inally designed to diagnose and reduce emissions and to
monitor the performance of major engine parts. It also allows
external electronics to be linked to electronically controlled
parts of the car. OBD monitors and detects faulty vehicle
components that contribute to exhaust emissions, thereby
reducing the release of pollutants into the air. The OBD also
collects data from faulty components from various sensors to
regulate them or to warn the driver of a fault. It stores the
faults in memory so that they can then be displayed on one
of the external diagnostic devices.

The basic diagnostic software OBD only allows interfac-
ing with control units connected to emission systems. For
connection to the airbag, navigation, or ABS control unit,
special diagnostic software must be used, e.g., VCDS/VAG
(Volkswagen/Audi/Skoda/Seat), BimCOM (BMW/Mini) [10].

1) OBD-I: One of the first standards was OBD-I. The
purpose of the OBD-I standard was to encourage car man-
ufacturers to design reliable and efficient emission control
systems. A malfunction of a particular vehicle component was
indicated by a flashing light, which most often had an engine
symbol. When Data Link Connectoru (DLC) was connected,
which was defined by each manufacturer, the light changed
to a two-digit number from which the fault can be identified.
Each manufacturer defined its diagnostic connector, but also
the location of the connector or the procedure for identifying
the fault, so there was no universal model.

2) OBD-II: The OBD-II standard was introduced because
of the versatility and unification of vehicle diagnostics across
car manufacturers. OBD-II specifies connector type, pin loca-
tions, signaling protocols, etc. Diagnostic Trouble Code (DTC)
is a group of five-digit alphanumeric codes used to identify
and diagnose a vehicle-related problem. Thanks to the OBD-II
standard, connecting to any vehicle’s onboard computer using
one universal device is possible. OBD-II is used to monitor the
emission control system and significant engine parts, among
other things.

3) EOBD: It is a European modification of OBD-II. EOBD
complies with EU emission regulations and does not differ
from OBD-II [10].

B. OBD-II communication protocols

The OBD-II interface uses five protocols. Each protocol
uses a different set of pins on the J1962 connector. The differ-
ent protocols are described in the following paragraphs [10].

1) SAE J1850 PWM: Pulse-width modulation is used to
transmit the signal of this protocol. The transmission rate is
41.6 kb/s. Pins 2 and 10 are used for communication, and
the level logic 1 is represented by +5 V. The word length is
12 b, and a cyclic checking mechanism is applied to check the
correctness of the transmitted bits. It is used, for example, in
Ford vehicles.

2) SAE J1850 VPW: The SAE J1850 VPW protocol uses
variable pulse width for transmission. The transmission rate is
10.4 kb/s or 41.6 kb/s. Pin 2 is used for communication, and
the level logic 1 is represented by +7 V. The protocol is used
by General Motors.

3) ISO 9141-2: This protocol uses asynchronous serial
communication at 10.4 kb/s. The communication is similar to
the RS232 standard, but the voltage levels are different. It uses
pin 7 (K-line) and optionally pin 15 (L-line). Communication
is bidirectional on a single wire (K-line) without a handshake
(automated determination of parameters for communication
before the actual data transfer). Signaling is done using a
universal asynchronous receiver-transmitter (UART) interface
that works with asynchronous serial communication and can
be used to set the format and baud rate. The ISO 9141-2
protocol is used by European and Asian cars.

4) ISO 14230 KWP 2000: KWP2000 is a diagnostic pro-
tocol defined in the ISO 14230 standard. The ISO 14230
standard specifies the format of the transmitted data or the
basic commands for communication. The KWP2000 protocol
can also be used to update the firmware of the vehicle control
unit.

5) ISO 15765-4/SAE J2480 (CAN): Bosch developed
the CAN protocol for automotive and industrial control.
Since 2008, all vehicles sold in the US have been required
to implement CAN as one of their protocols. It uses pins 6
(Can High) and 14 (Can Low).

C. CAN bus

Controller Area Network (CAN) is a serial data bus devel-
oped by Bosch. The goal was to create a bus that would save
cables and perform adequately in harsh environments, espe-
cially in industrial and automotive environments. With ever-
increasing demands and the increasing number of electrical
and electronic devices in the car, there was a need to design
an efficient and reliable solution. The CAN data bus connects
the various systems and sensors in the car.

The physical layer of the CAN bus is defined by ISO
11898-2 for high-speed CAN and ISO 11898-3 for low-
speed CAN. For the high-speed CAN version, the transfer
rate can be up to 1 Mb/s, for the low-speed CAN version
up to 125 kb/s. However, the high-speed CAN version is
currently the most commonly used. Data is transferred between
individual systems and sensors over a maximum of one pair
of wires. The pairs are designated as CAN-H and CAN-L.



CAN recognizes values as a recessive and dominant state. The
recessive state is represented by logic 1 and is defined such
that there is the same potential on both CAN-H and CAN-L
wires (CAN-H and CAN-L is 2.5 V). The dominant state is
represented by logic 0 and occurs when a potential difference
of 2 V occurs (CAN-H is 3.5 V and CAN-L is 1.5 V). The
transmission rate is guaranteed up to a distance of 40 m, with
increasing distance, the rate decreases [11].

IV. EXPERIMENTAL TESTBED

For purposes of security testing, we assembled a testbed
that simulates a vehicle and a communication link between
a vehicle and an RVU or RSU. The testbed consists of two
parts which are described in this section, and Fig. 1 shows the
block diagram.

MCP 2515
SPI -> CAN

Arduino
UNO

OBD-II
port

ELM 327
OBD-II

diagnostics

Power Supply

PC

Receiver
433 MHz
XY-MK-5

Transmitter
433 MHz
XY-FST

Arduino 
NANO

Simulator OBD-II (OBU)

Transmitter
(RSU)

+12 V

C
A
N

 b
u
s

Fig. 1. Schematic of the end-to-end experimental testbed.

A. OBD-II Simulator

Each modern vehicle contains units, sensors, and controllers
that communicate over CAN bus. Data on the CAN bus can
be accessed via On-Board Diagnostics II (OBD-II) interface.
The purpose of the OBD-II simulator is to simulate a vehicle
in laboratory conditions. Such a simulator can serve testing
purposes for security and new features testing. The schematic
of our simulator is shown in Fig. 2, each component is
described below.

• Arduino UNO: Program simulating a vehicle’s Electronic
Control Unit (ECU) is running on Arduino UNO. The
program generates vehicle type data, e.g., vehicle speed,
engine revolutions, throttle position, fuel tank level. For
this simulator, the data transmitted by the ECU can be
set from Arduino OBD 2 Simulator, originally developed
by Khairnar and published on Github [12]. The graphical
user interface is shown in Fig. 3.

• MCP 2515: This module is connected to the Arduino
UNO and converts the SPI interface into CAN bus
protocol. The data is further processed by diagnostic
ELM327.

MCP 2515

E
L
M

 3
27

D2D10D11D12D13

GNDUcc

USB

U
S
B

USB
+12 VU

S
B GND

CAN H

CAN L

Int
Sck
Si
So
Cs
GND
Ucc

O
B

D
-I

I
co

n
n
ec

to
r

+12 V

CAN H

CAN L

230 V

Arduino UNO with 
emulation SW

Power
supply

PC with
diagnostic SW

GND

GND

Fig. 2. Schematic of the OBD-II Simulator.

• ELM 327: Diagnostic ELM 327 supports all five com-
munication protocols of the OBD standard, including
ISO 15765-4 used for CAN bus. The diagnostic can
read the data from the ECU and process them further. It
communicates with a computer through a USB port where
specialized software must be present to decode the data.
One example of such software is the ScanMaster-ELM.
This program has many functions. However, to verify the
simulator’s functionality, only reading and decoding of
the received data is necessary. The diagnostic requires
an input of 12 V for correct functionality and the two
signal pins CAN-H and CAN-L for transfer of the data.
The ground signal is connected to the ground of Arduino
UNO.

Fig. 3. Desktop application for Arduino OBD-II Simulator.

After interconnecting all parts, as shown in Fig. 4, a link
between diagnostic software and the diagnostic must be set up.
Connection is made automatically, the program first identifies
the ELM327 diagnostic, which then sends a control frame



Arduino UNO with 
emulation software

USB Arduino USB ELM 327

PC with diagnostic 
software

ELM 327

MCP 2515

+12V

Fig. 4. Real interconnection of OBD-II Simulator.

to Arduino UNO. If the frame is received correctly, the
connection is set up, and the software prints out which protocol
is used for communication. In our case, it is the ISO 15765-4.
As soon as the connection is established, it is possible to read
the data from the simulated ECU.

Parameters must first be manually selected in the software
to achieve a reading of the values. The parameters are selected
based on their PIDs. PIDs are two-digit hexadecimal values
where each value represents one parameter of the vehicle.
For demonstration purposes, the parameter 0D was selected.
This parameter represents the vehicle speed. Fig. 3 shows
the vehicle speed parameter was set to 170 km/h. Arduino
UNO processes this value and sends it to the diagnostic. The
diagnostic software reads the values and prints them on the
screen, as is shown in Fig. 5.

B. Communication link between a vehicle and an RVU/RSU

The communication between entities in ITS-G5 infras-
tructure runs on the IEEE 802.11p standard. This standard
is not so widespread, and obtaining devices supporting it
was not possible at this moment. For testing purposes, the
IEEE 802.11p wireless links can be substituted with other
wireless technology. The choice for our simulator was a
technology working in an unlicensed spectrum. The selected
set was the transmitter XY-FST with the receiver XY-MK-5V.
The range of the devices can be up to 200 m with the transmit-
ting speed of up to 10 Kb/s. When doing measurements, the
drawback of the shared spectrum has to be taken into account.
The schematic of the communication link is shown in Fig. 6.

The interconnection of the wireless link is shown in Fig. 7.
Both the transmitter and the receiver are controlled externally.
In our simulator, each device is connected to an Arduino board.
Arduino UNO controls the transmitter, and Arduino NANO
controls the receiver. The controlling code of the transmitter
and receiver was based on the RadioHead library [13].

Fig. 5. Reading data from the OBD-II Simulator with the ScanMaster-ELM
diagnostic tool.

U
SB

USB

USB
USB

D12

Ucc

GND

GND DATA

+5V

GND

+5V

GND UccDATA DATA

D11

PC for sending 
and receiving 

messages

Arduino UNO as 
transmitter

Transmitter
XY-FST

Receiver XY-MK-5V

A
rd

u
in

o N
A
N

O
as receiver

Fig. 6. Schematic of the transmitter and receiver.

C. Example message and simulation results

Currently discussed topic in vehicular safety and traffic effi-
ciency is speed limiting [14]. Remote speed limiting managed
by ITS messages from other vehicles or the infrastructure can
prevent traffic congestion and increase road safety. Addition-
ally, the remote speed limiting can be used in more critical
cases, such as police chases. When the police chase a driver,
the police would be able to slow down or stop the vehicle
remotely. The procedure of remotely stopping the vehicle will
require a high level of security.

For this purpose, we implemented an example message
for changing the speed of a vehicle. The transmitter sends



Arduino UNO
as transmitter

Arduino NANO 
as receiver

Transmitter
433 MHz Receiver

433 MHz

Fig. 7. Real interconnection of transmitter and receiver with Arduino
controllers.

a message with the command to change the vehicle’s speed
to 29 km/h. The original speed of the vehicle was 170 km/h
as was previously shown in Fig. 5. Fig. 8 shows the log from
the speed limiting message from the transmitter as well as the
vehicle’s actual speed read from the OBD-II Simulator.

Further, an attack was simulated on the testbed. This sce-
nario consists of one authentic RSU, one OBU, and one rogue
RSU representing an attacker. The authentic RSU transmits
a message every two seconds which makes a total of 30
messages per minute. The rogue RSU transmits messages
in specific intervals. The number of successfully received
messages per different interval was averaged over ten minutes,
i.e., ten blocks of 30 messages. The plot showing the resulting
values is in Fig. 9.

According to the results, the attacker is able to completely
block the transmission of other RSUs when the interval
between messages is lower than 100 ms. On the other side, no
messages were lost when the attacker transmitted a message
every six seconds. The size of the attacker’s message had
no effect on the number of the received authentic messages.
This happens because the receiver receives messages from
all sources and if the attacker’s messages arrive before the
authentic message, it prevents the receiver to receive it, since
the receiver can only process one message at a time. These
results provide a starting point for us to improve the probability
of the number of successfully received messages.

Additionally, the transmitting signal was captured by a
wireless probe. Fig. 10 shows three views, the authentic
periodically transmitting RSU in time on the top, the detail of
the transmitted message in time in the middle, and frequency
spectrum of the transmitted signal on the bottom. Further the
analysis of these signals can be helpful for improving the
number of received messages by distinguishing the attacker
from the authentic transmitter.

Fig. 8. Implemented message with the goal of reducing a vehicle’s speed
with the verification of received data.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

10

20

30

Interval between attacker’s messages [ms].

N
um

be
r

of
re

ce
iv

ed
m

es
sa

ge
s,

-

Fig. 9. Impact of interval between attacker’s messages on the number of
successfully received authentic messages.

Time

A
m
pl
it
ud
e

Time

A
m
pl
it
ud
e

Time

F
re
qu
en
cy

Fig. 10. Periodic authentic transmission, single transmitted message, and
frequency spectrum.

V. CONCLUSION

This paper presented the current most crucial security
threats of vehicular technology with a focus on ITS. Security



violation in ITS might be sources for causing property damage
and possible life loss. These were the main motivation factors
for developing the presented security testbed.

The OBD-II Simulator was implemented on the Arduino
platform, as well as the communication between OBU and
the RSU/RVU by using the 433 MHz frequency from the ISM
radio band. The functionality was verified with an example
message for speed limiting. Also, an attack on the OBU was
simulated and the impact of a interval between transmitted
messages from the attacker was plotted. These results will be
helpful for evaluation when further security techniques will be
implemented. The testbed proved to be a good starting point
for future research in security testing and threat prevention.

The correct function can be further tested with a real
vehicle dashboard obtained from the damaged vehicle as future
improvements. That would verify the function on the latest
vehicle models which use the latest communication protocols.
The testbed can also be improved by replacing the transmitter
and receiver with wireless equipment used in the ITS-G5.
Those are wireless devices supporting the IEEE 802.11p
protocol. There is a minimal number of such devices on the
market. However, devices with the same or similar chips can
be purchased but require modifications of their firmware.

ACKNOWLEDGMENT

Research described in this paper was financed by the
Ministry of Interior under grant VJ01010066.

REFERENCES

[1] ETSI, “Automotive Intelligent Transport Systems (ITS),” [online].
[Acc. 2021-9-1]. [Online]. Available: https://www.etsi.org/technologies/
automotive-intelligent-transport

[2] ——, “TR 102 893 v1.2.1 - Intelligent Transport Systems (ITS);
Security; Threat, Vulnerability and Risk Analysis (TVRA),” [online].
[Acc. 2021-9-1]. [Online]. Available: https://www.etsi.org/deliver/etsi
tr/102800 102899/102893/01.02.01 60/tr 102893v010201p.pdf

[3] N. Bissmeyer, J.-F. van Dam, C. Zimmermann, and K. Eckert, “Security
in hybrid vehicular communication based on its-g5, lte-v, and mobile
edge computing,” in AmE 2018-Automotive meets Electronics; 9th
GMM-Symposium. VDE, 2018, pp. 1–6.

[4] M. N. Tahir, T. Sukuvaara, and M. Katz, “Vehicular networking: ITS-G5
vs 5G performance evaluation using road weather information,” in In-
ternational Conference on Software, Telecommunications and Computer
Networks (SoftCOM). IEEE, 2020, pp. 1–6.

[5] M. N. Tahir and M. Katz, “Heterogeneous (ITS-G5 and 5G) vehicular
pilot road weather service platform in a realistic operational environ-
ment,” Sensors, vol. 21, no. 5, p. 1676, 2021.

[6] M. N. Tahir, K. Mäenpää, T. Sukuvaara, and P. Leviäkangas, “Deploy-
ment and Analysis of Cooperative Intelligent Transport System Pilot
Service Alerts in Real Environment,” IEEE Open Journal of Intelligent
Transportation Systems, 2021.

[7] M. Randriamasy, A. Cabani, H. Chafouk, and G. Fremont, “Formally
Validated of Novel Tolling Service With the ITS-G5,” IEEE Access,
vol. 7, pp. 41 133–41 144, 2019.

[8] Joint Research Centre, “Cryptographic security mechanisms of the
next generation digital tachograph system and future considerations,”
[online]. [Acc. 2021-2-12]. [Online]. Available: https://publications.jrc.
ec.europa.eu/repository/bitstream/JRC77933/lbna25663enn.pdf

[9] I. A. Sumra, I. Ahmad, H. Hasbullah, and J. bin Ab Manan, “Classes
of attacks in VANET,” in 2011 Saudi International Electronics, Com-
munications and Photonics Conference (SIECPC), 2011, pp. 1–5.

[10] K. McCord, Automotive Diagnostic Systems: Understanding OBD I and
OBD II. CarTech Inc, 2011.

[11] A. A. Salunkhe, P. P. Kamble, and R. Jadhav, “Design and implemen-
tation of can bus protocol for monitoring vehicle parameters,” in IEEE
International Conference on Recent Trends in Electronics, Information
Communication Technology (RTEICT), 2016, pp. 301–304.

[12] D. Khairnar, “Arduino OBD2 Simulator,” [online]. [Acc. 2020-
12-11]. [Online]. Available: https://github.com/8-DK/Arduino OBD2
Simulator

[13] “How 433MHz RF Tx-Rx Modules Work & Interface with
Arduino,” [online]. [Acc. 2020-12-06]. [Online]. Available:
https://lastminuteengineers.com/433mhz-rf-wireless-arduino-tutorial/
#radiohead-library-a-swiss-army-knife-for-wireless-modules

[14] L. Bieker, “How Does the Traffic Behavior Change by Using In-Vehicle
Signage for Speed Limits in Urban Areas?” in Simulating Urban Traffic
Scenarios. Springer, 2019, pp. 37–46.


