36 research outputs found

    Neural Correlates of Experience-Induced Deficits in Learned Vocal Communication

    Get PDF
    Songbirds are one of the few vertebrate groups (including humans) that evolved the ability to learn vocalizations. During song learning, social interactions with adult models are crucial and young songbirds raised without direct contacts with adults typically produce abnormal songs showing phonological and syntactical deficits. This raises the question of what functional representation of their vocalizations such deprived animals develop. Here we show that young starlings that we raised without any direct contact with adults not only failed to differentiate starlings' typical song classes in their vocalizations but also failed to develop differential neural responses to these songs. These deficits appear to be linked to a failure to acquire songs' functions and may provide a model for abnormal development of communicative skills, including speech

    A Potential Neural Substrate for Processing Functional Classes of Complex Acoustic Signals

    Get PDF
    Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM) has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    First Sagittarius A* Event Horizon Telescope results. II. EHT and multiwavelength observations, data processing, and calibration

    Get PDF
    We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μas, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.http://iopscience.iop.org/2041-8205Physic

    First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration

    Get PDF
    We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μas, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior

    96-Well Plasmonic Sensing with Nanohole Arrays

    No full text
    A multiwell plasmonic reader was designed and validated for higher throughput analysis of biological interactions with a platform of the same size as standard 96-well plates. While the plasmonic sensor can be read with standard 96-well plate readers, a custom 96-well plate reader was designed to analyze nanohole arrays at high incident angles required for higher sensitivity. Gold nanohole arrays were manufactured on a 4 in. glass wafer using a photolithographic process. In comparison to single channel measurements with nanohole arrays fabricated with nanosphere lithography, the nanohole array sensors greatly enhanced the signal-to-noise ratio of the plasmonic signal and precision of the measurements with the multiwell plate system. As proof of concept, the detection of IgG in the low nanomolar range was achieved with the multiwell plate reader. The multiwell plasmonic plate reader was also applied to the screening of several prostate specific (PSA) antibodies for secondary detection of PSA and for the analysis of an anticancer drug through a competitive assay between methotrexate (MTX) and folic acid Au nanoparticle (FaNP) for human dihydrofolate reductase (hDHFR). The multiwell plasmonic reader based on nanohole array technology offers the rapid, versatile, sensitive, and simple high throughput detection of biomolecules

    Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing

    No full text
    The presence of microhole arrays in thin Au films is suited for the excitation of localized and propagating surface plasmon (SP) modes. Conditions can be established to excite a resonance between the localized and propagating SP modes, which further enhanced the local electromagnetic (EM) field. The co-excitation of localized and propagating SP modes depends on the angle of incidence (theta (exc)) and refractive index of the solution interrogated. As a consequence of the enhanced EM field, enhanced sensitivity and an improved response for binding events by about a factor of 3 to 5 was observed with SPR sensors in the Kretschmann configuration for a set of experimental conditions (lambda (SPR), theta (exc), and eta). Thus, microhole arrays can improve sensing applications of SPR based on classical prism-based instrumentation and are suited for SP-coupled spectroscopic techniques

    Plasmonic Nanopipette Biosensor

    No full text
    Integrating a SERS immunoassay on a plasmonic “patch clamp” nanopipette enabled nanobiosensing for the detection of IgG. A SERS response was obtained using a sandwich assay benefiting from plasmon coupling between a capture Au nanoparticle (AuNP) on a nanotip and a second AuNP modified with a Raman active reporter and an antibody selective for IgG. The impact of nanoparticle shape and surface coverage was investigated alongside the choice of Raman active reporter, deposition pH, and plasmonic coupling, in an attempt to fully understand the plasmonic properties of nanopipettes and to optimize the nanobiosensor for the detection of IgG. These probes will find applications in various fields due to their nanoscale size leading to the possibility of spatially and temporally addressing their location near cells to monitor secretion of biomolecules

    Portable bead-based fluorescence detection system for multiplex nucleic acid testing: a case study with Bacillus anthracis

    No full text
    This paper describes the design, functioning and use of a portable detection platform for multiplex nucleic acid testing. The system features a bead-supported DNA hybridization assay performed inside a microfluidic cartridge. Polystyrene particles modified with DNA capture probes are confined in the detection area and exposed to a solution of fluorescently labeled target DNA strands. The cartridge, fabricated from inexpensive thermoplastic polymers, allows for conducting up to eight assays in parallel. The detection instrument is equipped with a pneumatic module and a manifold lid serving as an interface to mediate fluid displacement on the cartridge. The fluorescence signal deriving from each assay is recorded by a semi-confocal fluorescence reader embedded in the detection platform. The compact design of the instrument and its level of integration make it possible to obtain an analytical result in less than 15 min, while only few manual steps need to be performed in between. A proof-of-concept demonstration involving Cy3-labeled, PCR-amplified genomic DNA confirms the ability to detect Bacillus anthracis in a multiplexed single-assay format using lef and capC genes. Limits of quantification are on the order of 1 7 109 copies/\u3bcL for lef targets. \ua9 2013 Springer-Verlag Berlin Heidelberg.Peer reviewed: YesNRC publication: Ye
    corecore