69 research outputs found

    Treatment-resistant depression and peripheral C-reactive protein.

    Get PDF
    BACKGROUND: C-reactive protein (CRP) is a candidate biomarker for major depressive disorder (MDD), but it is unclear how peripheral CRP levels relate to the heterogeneous clinical phenotypes of the disorder.AimTo explore CRP in MDD and its phenotypic associations. METHOD: We recruited 102 treatment-resistant patients with MDD currently experiencing depression, 48 treatment-responsive patients with MDD not currently experiencing depression, 48 patients with depression who were not receiving medication and 54 healthy volunteers. High-sensitivity CRP in peripheral venous blood, body mass index (BMI) and questionnaire assessments of depression, anxiety and childhood trauma were measured. Group differences in CRP were estimated, and partial least squares (PLS) analysis explored the relationships between CRP and specific clinical phenotypes. RESULTS: Compared with healthy volunteers, BMI-corrected CRP was significantly elevated in the treatment-resistant group (P = 0.007; Cohen's d = 0.47); but not significantly so in the treatment-responsive (d = 0.29) and untreated (d = 0.18) groups. PLS yielded an optimal two-factor solution that accounted for 34.7% of variation in clinical measures and for 36.0% of variation in CRP. Clinical phenotypes most strongly associated with CRP and heavily weighted on the first PLS component were vegetative depressive symptoms, BMI, state anxiety and feeling unloved as a child or wishing for a different childhood. CONCLUSIONS: CRP was elevated in patients with MDD, and more so in treatment-resistant patients. Other phenotypes associated with elevated CRP included childhood adversity and specific depressive and anxious symptoms. We suggest that patients with MDD stratified for proinflammatory biomarkers, like CRP, have a distinctive clinical profile that might be responsive to second-line treatment with anti-inflammatory drugs.Declaration of interestS.R.C. consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). E.T.B. is employed half time by the University of Cambridge and half time by GlaxoSmithKline; he holds stock in GlaxoSmithKline. In the past 3 years, P.J.C. has served on an advisory board for Lundbeck. N.A.H. consults for GlaxoSmithKline. P.d.B., D.N.C.J. and W.C.D. are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson. The other authors report no financial disclosures or potential conflicts of interest.This work was funded by a Wellcome Trust strategy award to the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium which is also funded by Janssen, GlaxoSmithKline, Lundbeck and Pfizer. Recruitment of patients was supported by the National Institute of Health Research (NIHR) Clinical Research Network: Kent, Surrey and Sussex & Eastern. SRC consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline; he holds stock in GSK. In the last three years PJC has served on an advisory board for Lundbeck. NAH consults for GSK. PdB, DJ and WCD are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson

    No evidence for differential gene expression in major depressive disorder PBMCs, but robust evidence of elevated biological ageing.

    Get PDF
    The increasingly compelling data supporting the involvement of immunobiological mechanisms in Major Depressive Disorder (MDD) might provide some explanation forthe variance in this heterogeneous condition. Peripheral blood measures of cytokines and chemokines constitute the bulk of evidence, with consistent meta-analytic data implicating raised proinflammatory cytokines such as IL6, IL1β and TNF. Among the potential mechanisms linking immunobiological changes to affective neurobiology is the accelerated biological ageing seen in MDD, particularly via the senescence associated secretory phenotype (SASP). However, the cellular source of immunobiological markers remains unclear. Pre-clinical evidence suggests a role for peripheral blood mononuclear cells (PBMC), thus here we aimed to explore the transcriptomic profile using RNA sequencing in PBMCs in a clinical sample of people with various levels of depression and treatment response comparing it with that in healthy controls (HCs). There were three groups with major depressive disorder (MDD): treatment-resistant (n = 94), treatment-responsive (n = 47) and untreated (n = 46). Healthy controls numbered 44. Using PBMCs gene expression analysis was conducted using RNAseq to a depth of 54.5 million reads. Differential gene expression analysis was performed using DESeq2. The data showed no robust signal differentiating MDD and HCs. There was, however, significant evidence of elevated biological ageing in MDD vs HC. Biological ageing was evident in these data as a transcriptional signature of 888 age-associated genes (adjusted p  0.6) that also correlated strongly with chronological age (spearman correlation coefficient of 0.72). Future work should expand clinical sample sizes and reduce clinical heterogeneity. Exploration of RNA-seq signatures in other leukocyte populations and single cell RNA sequencing may help uncover more subtle differences. However, currently the subtlety of any PBMC signature mitigates against its convincing use as a diagnostic or predictive biomarker

    Association of Variants at 1q32 and STAT3 with Ankylosing Spondylitis Suggests Genetic Overlap with Crohn's Disease

    Get PDF
    Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn's disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn's disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.6×10−10, odds ratio (OR) = 0.74, 95% CI:0.68–0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6×10−4. OR = 0.86 (95% CI:0.79–0.93); rs744166, P = 2.6×10−5, OR = 0.84 (95% CI:0.77–0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2×10−5, OR = 0.65 (95% CI:0.54–0.79)), and further associations were detected for IL12B (rs10045431, P = 5.2×10−5, OR = 0.83 (95% CI:0.76–0.91)), CDKAL1 (rs6908425, P = 1.1×10−4, OR = 0.82 (95% CI:0.74–0.91)), LRRK2/MUC19 (rs11175593, P = 9.9×10−5, OR = 1.92 (95% CI: 1.38–2.67)), and chr13q14 (rs3764147, P = 5.9×10−4, OR = 1.19 (95% CI: 1.08–1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn's disease and further highlight the involvement of common risk variants across multiple diseases

    Peripheral Blood Cell-Stratified Subgroups of Inflamed Depression.

    Get PDF
    BACKGROUND: Depression has been associated with increased inflammatory proteins, but changes in circulating immune cells are less well defined. METHODS: We used multiparametric flow cytometry to count 14 subsets of peripheral blood cells in 206 depression cases and 77 age- and sex-matched controls (N = 283). We used univariate and multivariate analyses to investigate the immunophenotypes associated with depression and depression severity. RESULTS: Depression cases, compared with controls, had significantly increased immune cell counts, especially neutrophils, CD4+ T cells, and monocytes, and increased inflammatory proteins (C-reactive protein and interleukin-6). Within-group analysis of cases demonstrated significant associations between the severity of depressive symptoms and increased myeloid and CD4+ T-cell counts. Depression cases were partitioned into 2 subgroups by forced binary clustering of cell counts: the inflamed depression subgroup (n = 81 out of 206; 39%) had increased monocyte, CD4+, and neutrophil counts; increased C-reactive protein and interleukin-6; and more severe depression than the uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven analysis identified 4 subgroups of depression cases, 2 of which (n = 38 and n = 100; 67% collectively) were associated with increased inflammatory proteins and more severe depression but differed in terms of myeloid and lymphoid cell counts. Results were robust to potentially confounding effects of age, sex, body mass index, recent infection, and tobacco use. CONCLUSIONS: Peripheral immune cell counts were used to distinguish inflamed and uninflamed subgroups of depression and to indicate that there may be mechanistically distinct subgroups of inflamed depression.This work was supported by the Wellcome Trust [104025]. M Lynall was supported by a fellowship and grant from Addenbrooke’s Charitable Trust, Cambridge and a fellowship from the Medical Research Council (MR/S006257/1). M. R. Clatworthy is supported by the NIHR Cambridge Biomedical Research Centre (Transplant and Regenerative Medicine), NIHR Blood and Transplant Research Unit, MRC New Investigator Research Grant, MR/N024907/1; Arthritis Research UK Cure Challenge Research Grant, 21777), and an NIHR Research Professorship (RP-2017-08-ST2-002). E. T. Bullmore and C. M. Pariante are each supported by a NIHR Senior Investigator award. This work was also supported by the NIHR Cambridge Biomedical Research Centre (Mental Health) and the Cambridge NIHR BRC Cell Phenotyping Hub, as well as the NIHR BRC at the South London and Maudsley NHS Foundation Trust and King's College London, London

    Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia

    Get PDF
    Context: Recent studies suggest that copy number variation in the human genome is extensive and may play an important role in susceptibility to disease, including neuropsychiatric disorders such as schizophrenia and autism. The possible involvement of copy number variants (CNVs) in bipolar disorder has received little attention to date. Objectives: To determine whether large (>100 000 base pairs) and rare (found in <1% of the population) CNVs are associated with susceptibility to bipolar disorder and to compare with findings in schizophrenia. Design: A genome-wide survey of large, rare CNVs in a case-control sample using a high-density microarray. Setting: The Wellcome Trust Case Control Consortium. Participants: There were 1697 cases of bipolar disorder and 2806 nonpsychiatric controls. All participants were white UK residents. Main Outcome Measures: Overall load of CNVs and presence of rare CNVs. Results: The burden of CNVs in bipolar disorder was not increased compared with controls and was significantly less than in schizophrenia cases. The CNVs previously implicated in the etiology of schizophrenia were not more common in cases with bipolar disorder. Conclusions: Schizophrenia and bipolar disorder differ with respect to CNV burden in general and association with specific CNVs in particular. Our data are consistent with the possibility that possession of large, rare deletions may modify the phenotype in those at risk of psychosis: those possessing such events are more likely to be diagnosed as having schizophrenia, and those without them are more likely to be diagnosed as having bipolar disorder

    Disturbed sex hormone milieu in males and females with major depressive disorder and low-grade inflammation

    Get PDF
    Sex hormones have biological effects on inflammation, and these might contribute to the sex-specific features of depression. C-reactive protein (CRP) is the most widely used inflammatory biomarker and consistent evidence shows a significant proportion (20–30 %) of patients with major depressive disorder (MDD) have CRP levels above 3 mg/L, a threshold indicating at least low-grade inflammation. Here, we investigate the interplay between sex hormones and CRP in the cross-sectional, observational Biomarkers in Depression Study. We measured serum high-sensitivity (hs-)CRP, in 64 healthy controls and 178 MDD patients, subdivided into those with hs-CRP below 3 mg/L (low-CRP; 53 males, 72 females) and with hs-CRP above 3 mg/L (high-CRP; 19 males, 34 females). We also measured interleukin-6, testosterone, 17-β-estradiol (E2), progesterone, sex-hormone binding globulin (SHBG), follicle-stimulating and luteinising hormones, and calculated testosterone-to-E2 ratio (T/E2), free androgen and estradiol indexes (FAI, FEI), and testosterone secretion index. In males, high-CRP patients had lower testosterone than controls (p = 0.001), and lower testosterone (p = 0.013), T/E2 (p < 0.001), and higher FEI (p = 0.015) than low-CRP patients. In females, high-CRP patients showed lower SHGB levels than controls (p = 0.033) and low-CRP patients (p = 0.034). The differences in testosterone, T/E2 ratio, and FEI levels in males survived the Benjamini-Hochberg FDR correction. In linear regression analyses, testosterone (β = −1.069 p = 0.033) predicted CRP concentrations (R2 = 0.252 p = 0.002) in male patients, and SHBG predicted CRP levels (β = −0.628 p = 0.009, R2 = 0.172 p = 0.003) in female patients. These findings may guide future research investigating interactions between gonadal and immune systems in depression, and the potential of hormonal therapies in MDD with inflammation

    Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1

    Get PDF
    Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype

    Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study

    Get PDF
    Funder: DH | National Institute for Health Research (NIHR); doi: https://doi.org/10.13039/501100000272Abstract: The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications
    • …
    corecore