76 research outputs found

    A cross-sectional study on prevalence and predictors of burnout among a sample of pharmacists employed in pharmacies in Central Italy

    Get PDF
    Burnout is defined as an occupational phenomenon linked to chronic workplace stress that has not been successfully managed and included among the factors influencing health status or contact with health services. Although several studies were performed for assessing this phenomenon, there is a lack of data on the prevalence of burnout and associated predictors, due to different definitions of the syndrome and heterogeneity of assessment methods. One of the well-known evidences on burnout is related to the highest risk professions, which include policemen, firemen, teachers, psychologists, medical students, nurses, physicians, and other health professionals, such as pharmacists. Objective. The aims of the present study were to (1) assess the occurrence of burnout syndrome among a sample of pharmacists employed in public and private pharmacies located in Rome province (Latium Region; central Italy); (2) evaluate the role of some potential predictors for the development of the syndrome. Materials and Methods. A questionnaire elaborated ad hoc was administered online to 2,000 members of the Association of Professional Pharmacists of Rome and its province and employed in public or private pharmacies. The questionnaire included the 14-item Shirom-Melamed Burnout Measure (SMBM) tool and questions on demographic characteristics and working conditions. Results. Physical exhaustion was the burnout dimension with the highest score; besides, approximately 11% of the studied pharmacists were categorized as having clinically relevant burnout levels (≄4.40). Several of the investigated variables significantly influenced the single burnout dimensions at the univariate analyses; multivariate analyses demonstrated that alcohol consumption and workplace location have a significant independent role on the overall SMBM index, while working time significantly influences clinically relevant burnout level. Conclusions. The results revealed that pharmacists are at risk of burnout, and thus, it is necessary to perform specific preventive intervention for managing this occupational threat

    Pharmacists' mental health during the SARS-CoV-2 pandemic in Italy

    Get PDF
    OBJECTIVE: The year 2020 was characterized by the outbreak of a new pandemic caused by a novel coronavirus named SARSCoV- 2. To face the pandemic, many countries worldwide imposed general lockdowns, closing all non-essential businesses. As primary care services, pharmacies had to remain open, thus putting pharmacy staff at significant risk of viral infection and overwork. This study aimed to assess the mental health of Italian Pharmacists, considering demographic and occupational characteristics, lifestyle, and habits, during the SARS-CoV-2 outbreak and the subsequent lockdown period (March-May 2020). MATERIALS AND METHODS: A web-based survey was created using GoogleÂź Forms to collect data from March 30, 2020, to June 1, 2020. The questionnaire consisted of three sections investigating: (1) demographic and occupational variables, (2) lifestyle and habits variables, (3) psychological distress and perceived well-being. RESULTS: A total of 401 participants completed the questionnaire. Older workers and those with more work experience reported more psychological stress. Older and female workers, who felt lonely at home and reported psychological stress, perceived poor well-being. CONCLUSIONS: Our findings demonstrate that the Sars-CoV-2 outbreak and subsequent lockdown rules affected pharmacists' mental health and that it is important to put in place preventive measures against the occurrence of mental disorders among them

    NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases—A Lesson from Cytokine Storm Syndrome

    Get PDF
    Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1 beta and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm

    Elevated serum polyclonal immunoglobulin free light chains in patients with severe asthma

    Get PDF
    Background: Inflammation plays a pivotal role in the pathophysiology of asthma. Free light chains (FLC) can cause inflammation by mast cell antigen-activation. Serum immunoglobulin (Ig) FLC Îș, but not λ, were shown elevated in adult males with asthma. We sought to investigate if serum Ig FLC concentrations are affected by asthma severity and their relationships with inflammatory outcomes.Methods: By using immunoassays, we measured serum Îș and λ Ig FLCs in 24 severe persistent asthma patients, 15 patients with moderate persistent asthma, 15 steroid-naĂŻve mild persistent asthma patients and 20 healthy control subjects in a cross-sectional observational study. Total and specific serum IgE concentrations, fractional exhaled nitric oxide (FENO), lung function, peripheral blood eosinophils and neutrophils, and C reactive protein (CRP) were also measured.Results: Serum Îș FLC concentrations were elevated in severe asthma patients compared mild asthma patients (p < 0.05) and healthy subjects (p < 0.05). Serum λ FLCs were higher in severe asthma patients than in healthy subjects (p < 0.05) and correlated with blood eosinophil counts (percentage, Îș: r = 0.51, p = 2.9678−6; λ: r = 0.42, p = 1.7377−4; absolute values, Îș: r = 0.45, p = 6.1284−5; λ: r = 0.38, p = 7.8261−4), but not with total or specific serum IgE. In severe asthma patients, serum Ig FLC correlated with serum CRP (Îș: r = 0.33; p = 0.003; λ: r = 0.38, p = 8.8305−4) and blood neutrophil cell counts (percentage, Îș: r = 0.31; p = 0.008; λ: r = 0.29, p = 0.01; absolute values, Îș: r = 0.40; p = 3.9176−4; λ: r = 0.40, p = 4.5479−4), were elevated in subjects with blood eosinophilia (≄300 cells/”L) (n = 13) compared with non-eosinophilic subjects (n = 10) (Îș: 19.2 ± 1.2 mg/L versus 12.1 ± 1.3 mg/L, p < 0.001; λ: 27.2 ± 2.6 mg/L versus 16.8 ± 2.5 mg/L, p < 0.01), but were similar in atopic (n = 15) versus nonatopic subjects (n = 9) (Îș: p = 0.20; λ: p = 0.80). Serum FLC were negatively correlated with lung function tests, including forced expiratory volume in one second (FEV1) (Îș: r = −0.33; p = 0.0034; λ: r = −0.33; p = 0.0035), and FEV1/forced vital capacity ratio (Îș: r = −0.33; p = 0.0034; λ: r = −0.33; p = 0.0036).Conclusion: Serum Ig FLCs are elevated in severe asthma adults and might represent new surrogate markers of inflammation. The pathophysiological implications of these findings require further research. This study was approved by the ethics committee of the University Hospital Agostino Gemelli Foundation and Catholic University of the Sacred Heart (approval number P/1034/CE2012)

    The PAU Survey & Euclid: Improving broad-band photometric redshifts with multi-task learning

    Full text link
    Current and future imaging surveys require photometric redshifts (photo-z) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge to advance our understanding of cosmology. In this paper, we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broad-band photometric redshifts. We use a multi-task learning (MTL) network to improve broad-band photo-z estimates by simultaneously predicting the broad-band photo-z and the narrow-band photometry from the broad-band photometry. The narrow-band photometry is only required in the training field, which enables better photo-z predictions also for the galaxies without narrow-band photometry in the wide field. This technique is tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-z that are 14% more precise down to magnitude i_AB<23, while reducing the outlier rate by 40% with respect to the baseline network mapping broad-band colours to only photo-zs. Furthermore, MTL significantly reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z>1. Applying this technique to deeper samples is crucial for future surveys like \Euclid or LSST. For simulated data, training on a sample with i_AB <23, the method reduces the photo-z scatter by 15% for all galaxies with 24<i_AB<25. We also study the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which further reduces the photo-z scatter.Comment: 20 pages, 16 figure

    Euclid preparation: VIII. The Complete Calibration of the Colour–Redshift Relation survey: VLT/KMOS observations and data release

    Get PDF
    The Complete Calibration of the Colour–Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour–redshift relation – P(z|C) to the Euclid depth (iAB = 24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3 ≀ z ≀ 2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOM grid cells. We measured Hα fluxes in a 1. 002 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B − V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z 2 galaxies

    Euclid preparation: XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

    Get PDF
    Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints

    Euclid preparation: XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

    Get PDF
    Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints
    • 

    corecore