1,392 research outputs found
An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process
This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm
A powerful and efficient multivariate approach for voxel-level connectome-wide association studies
We describe an approach to multivariate analysis, termed structured kernel principal component regression (sKPCR), to identify associations in voxel-level connectomes using resting-state functional magnetic resonance imaging (rsfMRI) data. This powerful and computationally efficient multivariate method can identify voxel-phenotype associations based on the whole-brain connectivity pattern of voxels, and it can detect linear and non-linear signals in both volume-based and surface-based rsfMRI data. For each voxel, sKPCR first extracts low-dimensional signals from the spatially smoothed connectivities by structured kernel principal component analysis, and then tests the voxel-phenotype associations by an adaptive regression model. The method's power is derived from appropriately modelling the spatial structure of the data when performing dimension reduction, and then adaptively choosing an optimal dimension for association testing using the adaptive regression strategy. Simulations based on real connectome data have shown that sKPCR can accurately control the false-positive rate and that it is more powerful than many state-of-the-art approaches, such as the connectivity-wise generalized linear model (GLM) approach, multivariate distance matrix regression (MDMR), adaptive sum of powered score (aSPU) test, and least-square kernel machine (LSKM). Moreover, since sKPCR can reduce the computational cost of non-parametric permutation tests, its computation speed is much faster. To demonstrate the utility of sKPCR for real data analysis, we have also compared sKPCR with the above methods based on the identification of voxel-wise differences between schizophrenic patients and healthy controls in four independent rsfMRI datasets. The results showed that sKPCR had better between-sites reproducibility and a larger proportion of overlap with existing schizophrenia meta-analysis findings. Code for our approach can be downloaded from https://github.com/weikanggong/sKPCR. [Abstract copyright: Copyright © 2018 Elsevier Inc. All rights reserved.
Functional connectivity of the human amygdala in health and in depression
To analyze the functioning of the amygdala in depression, we performed the first voxel-level resting state functional-connectivity neuroimaging analysis of depression of voxels in the amygdala with all other voxels in the brain, with 336 patients with major depressive disorder and 350 controls. Amygdala voxels had decreased functional connectivity with the orbitofrontal cortex, temporal lobe areas, including the temporal pole, inferior temporal gyrus, and the parahippocampal gyrus. The reductions in the strengths of the functional connectivity of the amygdala voxels with the medial orbitofrontal cortex and temporal lobe voxels were correlated with increases in the Beck Depression Inventory score and in the duration of illness measures of depression. Parcellation analysis in 350 healthy controls based on voxel-level functional connectivity showed that the basal division of the amygdala has high functional connectivity with medial orbitofrontal cortex areas, and the dorsolateral amygdala has strong functional connectivity with the lateral orbitofrontal cortex and related ventral parts of the inferior frontal gyrus. In depression, the basal amygdala division had especially reduced functional connectivity with the medial orbitofrontal cortex which is involved in reward; and the dorsolateral amygdala subdivision had relatively reduced functional connectivity with the lateral orbitofrontal cortex which is involved in non-reward
A Web-Services-Based P2P Computing-Power Sharing Architecture
As demands of data processing and computing power are increasing, existing information system architectures become insufficient. Some organizations try to figure out how to keep their systems work without purchasing new hardware and software. Therefore, a Webservices-based model which shares the resource over the network like a P2P network will be proposed to meet this requirement in this paper. In addition, this paper also discusses some problems about security, motivation, flexibility, compatibility and workflow management for the traditional P2P power sharing models. Our new computing architecture - Computing Power Services (CPS) - will aim to address these problems. For the shortcomings about flexibility, compatibility and workflow management, CPS utilizes Web Services and Business Process Execution Language (BPEL) to overcome them. Because CPS is assumed to run in a reliable network where peers trust each other, the concerns about security and motivation will be negated. In essence, CPS is a lightweight Web-Services-based P2P power sharing environment and suitable for executing computing works in batch in a reliable networ
Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression
To analyze the functioning of the posterior cingulate cortex (PCC) in depression, we performed the first fully voxel-level resting state functional-connectivity neuroimaging analysis of depression of the PCC, with 336 patients with major depressive disorder and 350 controls. Voxels in the PCC had significantly increased functional connectivity with the lateral orbitofrontal cortex, a region implicated in non-reward and which is thereby implicated in depression. In patients receiving medication, the functional connectivity between the lateral orbitofrontal cortex and PCC was decreased back towards that in the controls. In the 350 controls, it was shown that the PCC has high functional connectivity with the parahippocampal regions which are involved in memory. The findings support the theory that the non-reward system in the lateral orbitofrontal cortex has increased effects on memory systems, which contribute to the rumination about sad memories and events in depression. These new findings provide evidence that a key target to ameliorate depression is the lateral orbitofrontal cortex
Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression
The first brain-wide voxel-level resting state functional-connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 controls. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression.
One major circuit with altered functional connectivity involved the medial orbitofrontal cortex BA 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex BA 36 and entorhinal cortex BA 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex BA 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex BA 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems.
Second, the lateral orbitofrontal cortex BA 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex BA 21. This enhanced functional connectivity of the non-reward/punishment system (BA 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex BA 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex BA 47/12 is related to depression.
Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression, which are considered in the Discussion
Unusual dyspnea in a hemodialysis patient: A case report
The typical clinical symptoms of hemothorax include a rapid development of chest pain or dyspnea, which may be life-threatening without immediate management. As we know, spontaneous hemothorax, a collection of blood within the pleural cavity without previous history of trauma or other cause, which usually onsets suddenly. The early and accurate diagnosis of spontaneous hemothorax is imperative in clinical practice. We reported a middle-age male undergoing regular hemodialysis was referred to our emergency department due to unknown cause of dyspnea and acute respiratory failure. Chest radiography revealed bilateral patchy infiltration of lung. Pleural tap analysis showed exudative pleural effusion with numerous red blood cells. Video-assisted thoracic surgery (VATS) were performed and confirmed the final diagnosis of spontaneous hemothorax. He was then successfully treated with the surgery of VATS combined chest tube thoracostomy
The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites
Funding Information: The authors would like to thank MOST for financially supporting this work under grant No. MOST 110-2224-E-038-001. Publisher Copyright: © 2022 by the authors.Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl 2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu 2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρ o (V - Vc) -t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 10 7 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.publishersversionPeer reviewe
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Stereotactic ablative radiotherapy versus conventionally fractionated radiotherapy in the treatment of hepatocellular carcinoma with portal vein invasion: a retrospective analysis
BackgroundThis study aimed to compare the clinical outcomes of stereotactic ablative radiotherapy (SABR) and conventionally fractionated radiotherapy (CFRT) in hepatocellular carcinoma (HCC) patients with portal vein invasion (PVI).MethodsHCC patients with PVI treated with radiotherapy from 2007 to 2016 were analysed. CFRT was administered at a median dose of 51.5 Gy (interquartile range, 45-54 Gy) with 1.8-3 Gy per fraction. SABR was administered at a median dose of 45 Gy (interquartile range, 40-48 Gy) with 6-12.5 Gy per fraction. Treatment efficacy, toxicity, and associated predictors were assessed.ResultsAmong the 104 evaluable patients (45 in the SABR group and 59 in the CFRT group), the overall response rate (ORR, complete and partial response) was significantly higher in the SABR group than the CFRT group (62.2% vs. 33.8%, p = 0.003). The 1-year overall survival (OS) rate (34.9% vs. 15.3%, p = 0.012) and in-field progression-free survival (IFPS) rate (69.6% vs. 32.2%, p = 0.007) were also significantly higher in the SABR vs. CFRT group. All 3 rates remained higher in the SABR group after propensity score matching. Multivariable analysis identified SABR and a biologically effective dose ≥65 Gy as favourable predicators of OS. There was no difference between treatment groups in the incidence of radiation-induced liver disease or increase of Child-Pugh score ≥ 2 within 3 months of radiotherapy.ConclusionsSABR was superior to CFRT in terms of ORR, OS, and IFPS. We suggest that SABR should be the preferred technique for HCC patients with PVI
- …
