
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2005 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2005

A Web-Services-Based P2P Computing-Power Sharing A Web-Services-Based P2P Computing-Power Sharing

Architecture Architecture

Chen-Sheng Wang

Po-Yu Yang

Min-Jen Tsai

Follow this and additional works at: https://aisel.aisnet.org/iceb2005

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2005 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301390967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2005
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2005?utm_source=aisel.aisnet.org%2Ficeb2005%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Web-Services-Based P2P Computing-Power Sharing Architecture

Chen-Sheng Wang, Po-Yu Yang, Min-Jen Tsai
Institute of Information Management, National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan
cswang.iim92g@nctu.edu.tw, pyang.iim92g@nctu.edu.tw, mjtsai@cc.nctu.edu.tw

Abstract: As demands of data processing and computing
power are increasing, existing information system
architectures become insufficient. Some organizations try to
figure out how to keep their systems work without
purchasing new hardware and software. Therefore, a Web-
services-based model which shares the resource over the
network like a P2P network will be proposed to meet this
requirement in this paper.

In addition, this paper also discusses some problems
about security, motivation, flexibility, compatibility and
workflow management for the traditional P2P power sharing
models. Our new computing architecture - Computing
Power Services (CPS) - will aim to address these problems.
For the shortcomings about flexibility, compatibility and
workflow management, CPS utilizes Web Services and
Business Process Execution Language (BPEL) to overcome
them. Because CPS is assumed to run in a reliable network
where peers trust each other, the concerns about security and
motivation will be negated.

In essence, CPS is a lightweight Web-Services-based
P2P power sharing environment and suitable for executing
computing works in batch in a reliable network.

I. Introduction

In the era of host computing, almost everything is done by
mainframe computers. Processing in the mainframe often
becomes a bottleneck in the information systems. Therefore,
it forces enterprises to spend more money in upgrading
mainframe system in order to keep up with increasing
demands of computing power. Then, the client-server
architecture is proposed to address such issue. The client-
server architectures shift processing burden to the client
computers. By workload sharing, client-server systems can
maintain efficiency of the information systems while
reducing the budget for computing resources.

Although client-server architectures have gained wide
acceptance, increasing maintenance cost after system
deployment push many companies to search for another
ways to improve their processing power again without more
investment in new hardware and software in a competitive
market. In the meantime, some people try to think about how
to use existing resource in the company such as idle
computers or free storage space to reach the goal. This new
approach is called peer-to-peer systems. It allows users to

There are two main categories of P2P system currently.
One is file sharing (Napster) model and another is
distributed computing (CPU power sharing) model [1].

Proceedings of the Fifth International Conference on Electronic Business,
Hong Kong, December 5-9, 2005, pp. 156 - 166.

make use of collective power in the network and benefit by
lower costs and faster processing times.

Since P2P model is a system that allows users to share
their resources with each other over the network, it is a
matter to think about what kinds of computer resources can
be shared. Thus, computer resources such as file system,
network bandwidth and computing power are shared in some
current P2P models. But there are some problems in existing
P2P models, like lack of ability to customize computing
tasks, workflow management etc.

To address these problems, this paper presents CPS - a
lightweight Web-Services-based P2P power sharing
environment which is suitable for executing computing
works in batch in a reliable network. The architecture relies
on BPEL to provide workflow management and on Oracle’s
BPEL Process Designer to provide a visual development
environment. CPS also benefits from the characteristics of
Web services, which are an open standard and loosely
coupled.

II. Peer-To-Peer Model

The term “peer-to-peer” (P2P) refers to a class of systems
and applications that collect distributed resources to perform
a critical function in a decentralized manner. The resources
could be computing power, data (storage and content),
network bandwidth, and presence (computers, human, and
other resources) [6]. Generally, there are three features in the
P2P system: [1]

 A Computer can act as either client or server in the
system.

 It allows users to make use of the collective power in
the network

 A user benefits from lower costs and faster
processing times in the system.

By employing P2P model, an organization can
accumulate the existing resources to more powerful
resources to satisfy increasing demands of processing power
with economic expense. No matter how old the computer is,
how narrow the bandwidth is and how less the storage is,
many a little may make a mickle in the P2P network and it is
what P2P model want to do.

File sharing model

mailto:cswang.iim92g@nctu.edu.tw
mailto:pyang.iim92g@nctu.edu.tw
mailto:mjtsai@cc.nctu.edu.tw

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING ARCHITECTURE 157

According to [6], Content storage and exchange is one of the
areas where P2P technology has been most successful.
Distributed storage systems based on P2P technologies are
taking advantage of the existing infrastructure to provide the
features of file exchange, highly available safe storage,
anonymity, and manageability.

Napster is the first P2P file sharing application that jump
started the P2P area. Napster uses the centralized directory
model to maintain a list of music files, where the files are
added and removed as individual users connect and
disconnect from the system. Users submit search requests
based on keywords such as “title,” “artist,” etc. Napster has
been quite popular. It has had more than forty million client
downloads and has led to numerous variants of file-sharing
applications [6]. Other famous model like E-Donkey, eMule
and Bittorrent are also the examples of P2P file sharing
systems.

Distributed computing

Another model of P2P system is distributed computing. This
model tries to combine computing power to satisfy
processing demands. It can shorten a long processing time
without upgrading processing equipments. For example, in
January 1999, a system with the help of several tens of
thousands of Internet computers broke the RSA challenge
[DES-III] in less than 24 hours using a distributed
computing approach [3].

Distributed computing is often implemented in large-
scale scientific researches. A famous one is SETI@home [5].
Up to October, 2005, this project has a consolidated power
of about 40 TeraFLOPs/s (Thousands of Billions of floating
point operation per second), collected from more than five
million registered user machines [12].

In general, works which will be solved in a distributed
computing system need to be split into small independent
parts. Then, each part will be done by the specific software
which is downloaded from central server and is run on
participant computer. The results will be collected by a
central server. Because the results are collected, the tasks are
assigned by a central server and no direct communication
occurs between participant computers (peers), someone
argues that this architecture is not a purely P2P architecture
[6].

III. Problems Analysis

Problems about distributed computing

Because distributed computing can integrate computing
power over network to meet high processing demands such
as large-scale scientific computing and process efficiently, it
is suitable to process complex tasks. Nevertheless there are
some problems which make small-scale organizations hard
to pursue this architecture. These issues are discussed as
follows.

 Security

Security in the distributed computing model is based on trust.
Participants must completely trust the research organization
before they download the programs because to allowing
unknown programs running on your own computer is greatly
exposed to security breaches. A malicious attacker may add
or delete files on the computer, or connect to other
computers and perform illegal operations by attacking
vulnerability on the computer. It is very difficult to secure
P2P applications against such misuse, but if the patrons of
P2P project are famous like Intel and the University of
Oxford sponsoring the Cancer Research Project in UD,
reliance on safety of their computers will be enhanced.

 Motivation

Participants who take part in distributed computing only
want to make some contribution to the world and do not ask
any pay back. In many companies, there are thousands of
idle computers on 5:00 PM between 9:00 AM. Why do we
use them to process something? Someone argue that those
equipments are exclusive assets for companies and it is not
necessary to do something that is not beneficial to them.
Similarly, general participants do not hope to join the
projects with commercial purposes. To gain the participant's
confidence and attract them to participate, some famous P2P
systems like UD - a cancer research project - announce their
research results do not belong to any commercial
originations.

 Flexibility

In order to contribute, participants must download the
specific program which is developed for that project and
install it on their computers to donate CPU power. Once that
program needs to be updated to do new research, the tightly-
coupled relationship between participating program and
central server would make it hard to update all the programs
around the world efficiently. In addition, such kind of project
can not let participants design their own tasks and execute
them in the system. Although grid computing provide such
service, a command-line but not a visual interface to use the
service will make participants feel less friendly.

 Compatibility

Compatibility of participating programs across different
platforms is another problem. Some participating programs,
such as ones in UD project are only run on NT-compatible
platforms. However, there are a large number of
workstations that use Unix or other as operating systems. It
will be a pity that those workstations can’t join this project
due to compatibility. Although some distributed computing
systems like SETI@home solve this problem by developing
different versions of the program for different platforms, it
will increase the maintenance cost as many versions of the
program must be developed and updated.

 Workflow Management

What most of Grid or P2P distributed computing
middleware focuses on is performance, workload balance or

158 CHEN-SHENG WANG, PO-YU YANG, MIN-JEN TSAI

stability but hardly workflow management. With workflow
management, a complicated job which is composted of
many small tasks can be executed in parallel or sequentially.
At present, it is not natively supported by most models.

Available Solutions

According to the issues mentioned above, the paper presents
some available solutions or technologies to address these
problems.

Asynchronous Web Services

Web Services is a software development solution based on
Services Oriented Architecture (SOA) in Figure 1. A Web-
services-based system can inherit the features of Web
Services which are loosely coupled and open standard. If a
computing system is implemented by Web Services, it will
not only improve flexibility of software updates in the
system because of loosely-coupled relationship between
service consumer and provider but also be easily to
communicate because of open standard.

Figure 1 Architecture of Web Services [4]

Web Services is a message-based architecture and the
interaction between services can be synchronous or
asynchronous. In essence synchronous Web Services is not
suitable for distributed computing system because it is hard
to estimate the processing time in the system and it may
cause timeout exception. Therefore, asynchronous Web
Services [7,8,9] should be applied in the system to avoid
over-time exception because it is usual to wait for response
until tasks finished in distributed computing environment.
The problem of flexibility will be addressed by using
asynchronous Web Services to implement distributed
computing system.

Business Process Execution Language (BPEL)

BPEL [9,13] is a de facto standard of Web Services
composition and integrated by IBM and Microsoft from
WSFL and XLANG. It has the characteristics such visual

development, workflow management, exception and
transaction handling and compatibility with Web Services
[2].

Based on the characteristics of Web Services, BPEL is
suitable to solve the issues of a visual development
environment and workflow management in distributed
computing system. In addition, a complicated job can be
tackled by Web services composition which BPEL aims to
address and can be easily executed by BPEL engine.

Implementation in a trusty network

As discussed in last section, security in distributed
computing system is based on trust. So, it will be easy for
famous and large originations to sponsor P2P distributed
computing project but not for small-scale and medium-scale
companies. However, if we think from the perspective of an
organization, how about using idle computers in the
origination to process what the origination want to compute.
In other words, it is implementation in a trusty network.

In this paper Trusty network is defined as a network
where peers trust each other. No matter the intranet of an
origination or computer network of the friends, it can be
classified as trusty network if the peers in the network trust
each other. Our lightweight distributed computing system is
assumed to implement in a trusty network. Thus, the
concerns about security and motivation can be negated.

IV. The Architecture of Computing Power
Services

Based on the possible solutions in last section, this paper
proposes the CPS architecture, which is a Web-services-
based P2P architecture as shown in Figure 2. It provides
users a platform to design the business processes and control
workflow of the processes by using the visual characteristics
of BPEL. The architecture is assumed to be implemented in
the trusty network to execute the computation-intensive
tasks by using the idle computing power in the enterprises.

The Model of Web-Services-Based Power Sharing

The key point of CPS is how to assign the jobs in distributed
computing environment. Intuitively, the computing requester
should search for the computing units and give them the
tasks to do. If CPS is implemented so, each computing unit
will need to publish a Web service as accessing point. It will
mean an application server will be necessary to host a Web
service.

However, such environment will be too complicated for
users to provide computation and it will discourage users to
participate the project. Hence, to comply with the concept of
thin client and encourage users to provide their computing
power, this paper makes the computing unit as service
requester and the computing requester as service provider.

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING ARCHITECTURE 159

The requesters design their processes by a BPEL visual
development environment. After designing, the requester
will publish their requirement at the end of coordinator. If
computing unit asks for the subtasks through the coordinator,
the coordinator will assign the URL of computing requester
in the list to computing unit by round-robin mechanism.
Afterward, the computing unit will use the specified URL to
communicate with the computing requester directly.

Internet/Intranet

Web Service

Task
Queue

Computing Power Requester

Contract
Subtask

Result

Contract

Computing
Service Unit

Subtask
Result

Contract

Computing
Service Unit

Subtask
Result

Contract

Computing
Service Unit

Subtask
Result

In addition, the function of account and auditing
management will be implemented at the end of coordinator.
This role is corresponding to the role of UDDI in SOA.

 The role of Computing Unit

This role is responsible for execute computation. It will
inquire the coordinator to ask for the job when it is idle.
After getting back the requester’s URL of Web services, it
negotiates with the requester to download the task and
required files for that task. Then, it starts to execute the task
and respond the result to the requester when the task is
finished. The whole procedure will continue until all tasks
are done.

Figure 2 Architecture Diagram of CPS

The Roles of CPS Architecture
The interaction among roles and the operating

procedures of CPS are described by Figure 3 below. Because CPS bases on the architecture of Web services, it
will inherit the characteristics of SOA which consists of 3
participants that are service requester, service provider and
service broker. However, in order to make the program
developed in CPS as thin as possible, 3 participating roles
will be changed slightly to meet the requirement discussed
in last section. The description of 3 roles will be explained in
the following section.

Coordinator

1. Registry request

2. Accept request

 The role of Coordinator

The coordinator acts as a service broker to fairly mediate
between the computing unit (service requester) and
computing requester (service provider). Its main function is
to maintain a list which records the URL and requirement of
computing requester. This list will be created when the
computing requester publishes its Web service in the
coordinator. If computing unit asks for the subtasks through
the coordinator, the coordinator will assign the URL of
computing requester in the list to computing unit by round-
robin mechanism. Afterward, the computing unit will use the
specified URL to communicate with the computing requester
directly.

Requester
Database

3. Provide Computing Power

4. Response Requester IP

5.
Co

nt
ra

ct

6.
Su

bt
as

k

7.
Re

su
lt

8. Cancel the request

Requester

Computing Unit

0. Download Computing Unit application

Figure 3 Operation Diagram of CPS

The System Architecture of CPS

The Figure 4 is the diagram of CPS architecture. By
functionality, the architecture is divided into 5 layers, which
are the User Layer, the Power Sharing Layer, the
Communication Layer, the Contract Layer and the
Discovery Layer.

In addition, the function of account and auditing
management will be implemented at the end of coordinator.
This role is corresponding to the role of UDDI in SOA.

 The role of Computing Power Requester

160 CHEN-SHENG WANG, PO-YU YANG, MIN-JEN TSAI

Executor

Profile

Contract

Computing Unit

User Interface

Personalize Module

Find Requester

Get Subtasks

Execute Subtasks

Response Results

Contract

Requester
Web
rvices

nstances
Se
I

Contract Contract Contract

Flow Designer Visual
Interface

Task Workflow

TaskUnit
Asynchronous

Control

B
PEL

w
orkflow

controler

Invoke

Requester

ExpClient
Subtasks Generator

Subtasks Assigner

Results Collector

R
ule controller

Queue

Results
Rule Remove request

Coordinator

Request Register

Request Match

Request Remover

Log

Request

Log

U
ser Layer

Pow
er

Sharing
Layer

C
om

m
unication

Layer
C

ontract
Layer

D
iscovery Layer

SOAP
sage

Internet
Mes

P2P Pow
er Sharing M

iddlew
are

Figure 4 The Layer Diagram of CPS Architecture

P2P Power Sharing Middleware

Excluding the User Layer, the other 4 layers comprise the
P2P Power Sharing middleware which is the core of CPS.

Because CPS is based on Web services, the middleware is
also established by the protocols of Web services as the
Figure 5 shows.

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING ARCHITECTURE 161

Web Services
Instance

Requester
Web

Services
Instances

Web Services
Instance

Web Services
Instance

Web
Services
Instance

UDDI

Services Providers Services Requesters

C
om

m
unication

Layer
C

onversation
Layer

D
escription Layer

D
iscovery Layer

SOAP
Message
Internet

Figure 5 The Diagram of P2P Middleware in the CPS Architecture

 The User Layer

The users access the whole architecture in this layer. This
layer will be implemented at the end of requester and
computing unit. While, at the end of computing unit, it
provides an interface to control the execution of the program,
it will allow user to design the BPEL process at the end of
the requester. Besides, it also provide GUI interface to
facilitate the designing and managing the workflow of the
process.

 The Power Sharing Layer

This layer corresponds to the Description Layer of Web
services. It describes the interaction between the requester
and the computing unit.

 The Communication Layer

This layer uses the communication mechanism of Web
services, i.e. SOAP.

 The Contract Layer

The conversation between a computing unit and the
requester will be defined by the contract in this layer.

 The Service Discovery Layer

The coordinator operates in this layer as a broker agent for
the requester and computing unit. The coordinator will not
involve the computing.

The Interaction between User Layer and P2P CPS
Middleware

By using BPEL as a language to develop the process, CPS
provides the environment of visual development and the
capability of workflow management. However, BPEL
doesn’t support the distributed computing. Therefore, this
paper develops a TaskUnit program which interacts with P2P
CPS middleware to address this issue.

Actually, TaskUnit is a process developed by using
BPEL. It can be viewed as the process of task dispatcher to
provide the capability of distributing computing. It
comprises of 2 modules. While One module is to invoke a
ExpClient Web service, another module will asynchronous
receives the result sending by P2P CPS middleware.

The Figure 6 describes the interaction between TaskUnit
and P2P CPS middleware.

162 CHEN-SHENG WANG, PO-YU YANG, MIN-JEN TSAI

Coordinator

1. Registry request

2. Accept request

Requester
Database

3. Provide Computing Power

4. Response Requester IP

5.
Co

nt
ra

ct

6.
Su

bt
as

k

7.
Re

su
lt

8. Cancel the request

TaskUnit invoke

Requester
(ExpClient)

Computing Unit

0. Download Computing Unit application

Asynchronous response

Figure 6 The Interaction Between TaskUnit and P2P Middleware

The Mechanism of Exception Handling

There are two possible exceptions when CPS operates. The
one is that a user closes the program at the end of computing
unit, the other is that the computing unit can not finish the
task before time-out. To address both exceptions, CPS
employs the mechanism of task reassigning after time-out
and roll-back at the end of computing end.

The Assigning Rule at the End of Requester

The flowchart of assigning subtasks at the end of requester is
indicated in Figure 7. In general, the mechanism of
assigning subtasks will distribute the unassigned subtasks to
the computing unit. If all subtasks are assigned, the requester
will use the mechanism of reassigning subtasks to find the
time-out tasks. The length of time-out timer will be defined
in the assigning rules.

Although CPS can handle the breach of contracts by
using the mechanism of reassigning subtasks, it will cost
more resources to redo the tasks.

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING ARCHITECTURE 163

Figure 7 The Flow Chart of Assigning Subtasks at the End of Requester

The Roll-Back Mechanism at the End of Computing Unit

As Figure 8 depicts, the program at the end of Computing
Unit will perform computation according to the contract.
After finishing the subtask, it will reply the result to the
requester, terminate the contract and remove results. If the
program is abnormally terminated, the contract still exists at

the end of Computing Unit. Therefore, as soon as the
program starts, it will verify existence of the contract. If it
does, the program will remove the previous result and do
computation again. Although this paper adopts the
conservative way to roll back the computation, it guarantees
finishing the contract.

Figure 8 The Flow Chart of Executing Subtasks and Roll-back at the End of Computing Unit

164 CHEN-SHENG WANG, PO-YU YANG, MIN-JEN TSAI

V. Implementation and Result

System Implementation

As Figure 9 depicts, CPS is implemented in the trusted
network to utilize the idle computing power. The coordinator
publishes a Web service to provide the list of requiring

computing power as the access point of CPS. As for the
requester, it uses Oracle Process Manager Server [11] to host
BEPL engine and Oracle PM designer with Eclipse to
provide GUI interface for designing and management.
Meanwhile, a low-priority program is run at the end of the
computing unit to execute the task from the requestor. The
purpose to lower the priority of a program is to avoid
impacting the routine work of the computing unit.

Trusty Network

Coordinator
(協調者)

Requester/Computing Unit

Requester DB

Requester(需求者)

Computing Unit(運算者)

Figure 9 The Deployment Diagram of CPS

Result

To verify the architecture, a lab is arranged to test CPS on
executing the program from [14]. This program will extract
the watermark by using 76,177 filers which will be grouped
into several subtasks with a group having 100 filters. By
using the similar computers at the end of computing unit, the

total computing time versus the number of computers
involved to finish the lab is graphed in Figure 10.

A WEB-SERVICES-BASED P2P COMPUTING-POWER SHARING ARCHITECTURE 165

Total Computing Time

21:12

10:57
07:40

05:58 04:59 03:54
00:00

04:48

09:36

14:24

19:12

00:00

1 2 3 4 5 6

Number of Computing Units

H
ou

rs

Figure 10 The Computing Time to Finish the Lab

According to [14], one computer will spend about 20 hours
to finish the specified lab. If the number of filters is
increased to 1,628,250 and each group consists of 500 filters,
one computer will need 18 days to finish the lab. However,
CPS will shorten the computing time to 2 days 14 hours 13
seconds to do the same lab. The deducting ratio is almost 1/9.
As a result, CPS indeed helps executing a computation-
intensive task.

VI. Conclusions

This paper presents the architecture of CPS which employs
the protocols of Web services to address the flexibility issues
of current P2P computing, uses BPEL to control the
workflow of the process and provides a user-friendly
environment to design the process. In addition, the
architecture is assumed to perform in the trusted network to
avoid the security issue.

Such a lightweight architecture is especially applicable
to the batch programs which need intensive computing
power and appropriate to the enterprises which can
efficiently utilize their computing power after the office
hours. Besides, it also provides a graphical designing and
management environment to the enterprises.

Future Works

 Workflow Management

Currently, the mechanism of Roll-Back will redo the
unfinished task when an exception occurs. The purpose to do
so is to guarantee the contract is performed exactly. However,
it will consume more resources to finish the same task.
Therefore, how to efficiently continue the interrupted task
will be a future work to address.

 Process Optimization

Although CPS shortens the computing time, is it an
optimized solution? In Figure 11, there are 4 computing
units A, B, C and D assigned to execute a process. Each
colored block means the computing time needed to finish
one subtask. If A and D ask the requester to assign a new
subtasks at the same time when only 2 subtasks are left to
finish, the requester will assign one subtask to A and D when
the round-robin mechanism is used. Then, the total
computing time will be depicted in Figure 11 (a). However,
if the dynamic mechanism such as assigning the subtask
according to the previous computing time, both subtasks
should be assigned to D because it finishes the subtask faster.
Then, the more optimized solution is concluded in Figure
11(b).

166 CHEN-SHENG WANG, PO-YU YANG, MIN-JEN TSAI

C
D

A
B

Time

C
D

A
B

Time

Finishing time

(a) If requester assigns one to A, another to D

C
D

A
B

Time

(b) If requester assigns both to D, finish time is optimal.

A and D request for new subtask when Requester still
has 2 subtasks to assign

Finishing time

Figure 11 The Optimized Task Assignments of a Process

In addition, BPEL provide the capability to run the subtasks
in parallel. Hence, the work to find the more optimized
solution which finishes the parallel process is a topic
deserved to research.

 BPEL Virtual Machine

In essence, BPEL could be though as programming language
of the process. Therefore, BPEL virtual machine could be
designed to execute the process. Doing so, the BPEL virtual
machine will be downloaded to the computing unit and the
subtask will be the fragment of BPEL document that could
be executed in the virtual machine. Then, the issue of cross
platform could be addressed.

References

[1] Alfred W. Loo “The Future of Peer-to-peer Computing”

Communications of The ACM September 2003 Vol.46,No.9 P.57-61
[2] Biplav Srivastava, Jana Koehler “Web Service Composition - Current

Solutions and Open Problems”
[3] Cavallar, S. et al, “Factorization of a 512-bit RSA Modulus.”,

Proceedings of EuroCrypt 2000, Bruges (Brugge), Belgium.
[4] Dan Gisolfsi, Web Services Architect , Solutions Architect, IBM

jStart Emerging Technologies 01 Apr 2001 http://www-
106.ibm.com/developerworks/webservices/library/ws-arc1/

[5] David P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.
Werthimer. ” SETI@home: An Experiment in PublicResource
Computing.” , Communications of the ACM, 45, 2002.

[6] Dejan S. Milojicic “Peer-to-Peer Computing” HP Laboratories Palo
Alto March 2002

[7] Holt Adams “Asynchronous operations and Web services: A primer
on asynchronous transactions” http://www-
106.ibm.com/developerworks/library/ws-asynch1.html , 2002

[8] Matt Powell “Asynchronous Web Service Calls over HTTP with
the .NET Framework” http://msdn.microsoft.com/library/en-
us/dnservice/html/service09032002.asp?frame=true September 9,
2002

[9] Matt Powell “Server-side Asynchronous Web Methods”
http://msdn.microsoft.com/library/en-
us/dnservice/html/service10012002.asp?frame=true October 2, 2002

[10] Nikola Milanovic and Miroslaw Malek, “Current Solutions for Web
Service Composition” IEEE INTERNET COMPUTING
NOVEMBER DECEMBER 2004, P.51-59

[11] Oracle Lab Segments “Oracle BPEL Process Manager Training”
http://otn.oracle.com/bpel , August 2004

[12] SETI@home, “Current Total Statistics”,
http://seticlassic.ssl.berkeley.edu/totals.html

[13] Tony Andrew, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein et al. “Business Process Execution Language for Web
Services” http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[14] Tseng, L. H. (2003). The wavelet packet transform based
watermarking for the digital image ownership verification.
Unpublished master’s thesis, National Chiao-Tung University, Taiwan

	A Web-Services-Based P2P Computing-Power Sharing Architecture
	Introduction
	Peer-To-Peer Model
	Problems Analysis
	The Architecture of Computing Power Services
	Implementation and Result
	Conclusions

