214 research outputs found

    How should fishing mortality be distributed under balanced harvesting?

    Full text link
    Zhou and Smith (2017) investigate different multi-species harvesting scenarios using a simple Holling-Tanner model. Among these scenarios are two methods for implementing balanced harvesting, where fishing is distributed across trophic levels in accordance with their productivity. This note examines the effects of a different quantitative implementation of balanced harvesting, where the fishing mortality rate is proportional to the total production rate of each trophic level. The results show that setting fishing mortality rate to be proportional to total production rate, rather than to productivity per unit biomass, better preserves trophic structure and provides a crucial safeguard for rare and threatened ecological groups. This is a key ingredient of balanced harvesting if it is to meet its objective of preserving biodiversity

    Balanced exploitation and coexistence of interacting, size-structured, fish species

    Get PDF
    This paper examines some effects of exploitation on a simple ecosystem containing two interacting fish species, with life histories similar to mackerel (Scomber scombrus) and cod (Gadus morhua), using a dynamic, size-spectrum model. Such models internalize body growth and mortality from predation, allowing bookkeeping of biomass at a detailed level of individual predation and growth and enabling scaling up to the mass balance of the ecosystem. Exploitation set independently for each species with knife-edge, size-at-entry fishing can lead to collapse of cod. Exploitation to achieve a fixed ratio of yield to productivity across species can also lead to collapse of cod. However, harvesting balanced to the overall productivity of species in the exploited ecosystem exerts a strong force countering such collapse. If balancing across species is applied to a fishery with knife-edge selection, size distributions are truncated, changing the structure of the system and reducing its resilience to perturbations. If balancing is applied on the basis of productivity at each body size as well as across species, there is less disruption to size-structure, resilience is increased, and substantially greater biomass yields are possible. We note an identity between the body size at which productivity is maximized and the age at which cohort biomass is maximized. In our numerical results based on detailed bookkeeping of biomass, cohort biomass reaches its maximum at body masse

    In Memoriam: Everett F. Goldberg

    Get PDF

    Key challenges for the surveillance of respiratory viruses: transitioning out of the acute phase of the SARS-CoV-2 pandemic

    Full text link
    To support the ongoing management of viral respiratory diseases, many countries are moving towards an integrated model of surveillance for SARS-CoV-2, influenza, and other respiratory pathogens. While many surveillance approaches catalysed by the COVID-19 pandemic provide novel epidemiological insight, continuing them as implemented during the pandemic is unlikely to be feasible for non-emergency surveillance, and many have already been scaled back. Furthermore, given anticipated co-circulation of SARS-CoV-2 and influenza, surveillance activities in place prior to the pandemic require review and adjustment to ensure their ongoing value for public health. In this perspective, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies, their contribution to epidemiological assessment, forecasting, and public health decision making

    Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

    Get PDF
    In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and αvβ3 integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer

    A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp

    Get PDF
    BACKGROUND: Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT) which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA) and slide agglutination test (SAT), can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. METHODS: The polymerase chain reaction (PCR) has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative) PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. RESULTS AND CONCLUSIONS: The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells

    MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E) : major element chemistry and the importance of process versus source

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q05004, doi:10.1029/2008GC001959.We report highly variable mid-ocean ridge basalt (MORB) major element and water concentrations from a single 1050-km first-order spreading segment on the ultraslow spreading Southwest Indian Ridge, consisting of two supersegments with strikingly different spreading geometry and ridge morphology. To the east, the 630 km long orthogonal supersegment (<10° obliquity) dominantly erupts normal MORB with progressive K/Ti enrichment from east to west. To the west is the 400 km long oblique supersegment (up to 56° obliquity) with two robust volcanic centers erupting enriched MORB and three intervening amagmatic accretionary segments erupting both N-MORB and E-MORB. The systematic nature of the orthogonal supersegments' ridge morphology and MORB composition ends at 16°E, where ridge physiography, lithologic abundance, crustal structure, and basalt chemistry all change dramatically. We attribute this discontinuity and the contrasting characteristics of the supersegments to localized differences in the upper mantle thermal structure brought on by variable spreading geometry. The influence of these differences on the erupted composition of MORB appears to be more significant at ultraslow spreading rates where the overall degree of melting is lower. In contrast to the moderate and rather constant degrees of partial melting along the orthogonal supersegment, suppression of mantle melting on the oblique supersegment due to thickened lithosphere means that the bulk source is not uniformly sampled, as is the former. On the oblique supersegment, more abundant mafic lithologies melt deeper thereby dominating the more enriched aggregate melt composition. While much of the local major element heterogeneity can be explained by polybaric fractional crystallization with variable H2O contents, elevated K2O and K/Ti cannot. On the basis of the chemical and tectonic relationship of these enriched and depleted basalts, their occurrence requires a multilithology mantle source. The diversity and distribution of MORB compositions, especially here at ultraslow spreading rates, is controlled not only by the heterogeneity of the underlying mantle, but also more directly by the local thermal structure of the lithosphere (i.e., spreading geometry) and its influence on melting processes. Thus at ultraslow spreading rates, process rather than source may be the principle determiner of MORB composition.This work was originally funded in large part by NSF grants OCE-9907630 and OCE-0526905 and more recently by OPP-0425785

    Anatomy of STEM Teaching in American Universities: A Snapshot from a Large-Scale Observation Study

    Get PDF
    National and local initiatives focused on the transformation of STEM teaching in higher education have multiplied over the last decade. These initiatives often focus on measuring change in instructional practices, but it is difficult to monitor such change without a national picture of STEM educational practices, especially as characterized by common observational instruments. We characterized a snapshot of this landscape by conducting the first large scale observation-based study. We found that lecturing was prominent throughout the undergraduate STEM curriculum, even in classrooms with infrastructure designed to support active learning, indicating that further work is required to reform STEM education. Additionally, we established that STEM faculty’s instructional practices can vary substantially within a course, invalidating the commonly-used teaching evaluations based on a one-time observation
    corecore