183 research outputs found
Systematically Searching for New Resonances at the Energy Frontier using Topological Models
We propose a new strategy to systematically search for new physics processes
in particle collisions at the energy frontier. An examination of all possible
topologies which give identifiable resonant features in a specific final state
leads to a tractable number of `topological models' per final state and gives
specific guidance for their discovery. Using one specific final state,
, as an example, we find that the number of possibilities is
reasonable and reveals simple, but as-yet-unexplored, topologies which contain
significant discovery potential. We propose analysis techniques and estimate
the sensitivity for collisions with TeV and
fb
Recommended from our members
LUVMI: an innovative payload for the sampling of volatiles at the Lunar poles
The ISECG identifies one of the first exploration steps as in situ investigations of the moon or asteroids. Europe is developing payload concepts for drilling and sample analysis, a contribution to a 250kg rover as well as for sample return. To achieve these missions, ESA depends on international partnerships.
Such missions will be seldom, expensive and the drill/sample site selected will be based on observations from orbit not calibrated with ground truth data. Many of the international science community’s objectives can be met at lower cost, or the chances of mission success improved and the quality of the science increased by making use of an innovative, low mass, mobile robotic payload following the LEAG
recommendations.
LUVMI provides a smart, low mass, innovative, modular mobile payload comprising surface and subsurface sensing with an in-situ sampling technology capable of depth-resolved extraction of volatiles, combined with a volatile analyser (mass spectrometer) capable of identifying the chemical composition of the most important volatiles. This will allow LUVMI to: traverse the lunar surface prospecting for volatiles; sample subsurface up to a depth of 10 cm (with a goal of 20 cm); extract water and other loosely bound volatiles; identify the chemical species extracted; access and sample permanently shadowed regions (PSR).
The main innovation of LUVMI is to develop an in situ sampling technology capable of depth-resolved extraction of volatiles, and then to package within this tool, the analyser itself, so as to maximise transfer
efficiency and minimise sample handling and its attendant mass requirements and risk of sample alteration. By building on national, EC and ESA funded research and developments, this project will develop to TRL6 instruments that together form a smart modular mobile payload that could be flight ready in 2020.
The LUVMI sampling instrument will be tested in a highly representative environment including thermal, vacuum and regolith simulant and the integrated payload demonstrated in a representative environment
Recommended from our members
Characterisation of the LUVMI Volatile Extraction and Volatiles Analysis package
Recommended from our members
Lunar Volatiles Mobile Instrumentation (LUVMI) Project Results
LUVMI is an innovative, low mass, mobile robotic payload designed specifically for operations at the South Pole of the Moon with a range of several kilometres. Over the 2 past years of the project, the key LUVMI scientific instruments (volatiles analyser and volatiles sampler) were successfully developed and validated up to TRL 5-6. In addition, a ground prototype of the LUVMI rover was developed and tested in a series of outdoor trials, in rocky and sandy environments. This rover, with a target dry mass of ~40kg for a flight version, features an adjustable height chassis to adapt to terrain roughness and allowing to bring instruments very closely and precisely to the surface. The locomotion capability of the LUVMI rover was tested in partially representative conditions, as part of the project. This paper reports on the project’s results and lessons learnt, and gives indications of how LUVMI may be further matured to target potential mission slots in the mid-2020s, as part of ESA mission and/or supported by private funding
Do female association preferences predict the likelihood of reproduction?
Sexual selection acting on male traits through female mate choice is commonly inferred from female association preferences in dichotomous mate choice experiments. However, there are surprisingly few empirical demonstrations that such association preferences predict the likelihood of females reproducing with a particular male. This information is essential to confirm association preferences as good predictors of mate choice. We used green swordtails (<i>Xiphophorus helleri</i>) to test whether association preferences predict the likelihood of a female reproducing with a male. Females were tested for a preference for long- or short-sworded males in a standard dichotomous choice experiment and then allowed free access to either their preferred or non-preferred male. If females subsequently failed to produce fry, they were provided a second unfamiliar male with similar sword length to the first male. Females were more likely to reproduce with preferred than non-preferred males, but for those that reproduced, neither the status (preferred/non-preferred) nor the sword length (long/short) of the male had an effect on brood size or relative investment in growth by the female. There was no overall preference based on sword length in this study, but male sword length did affect likelihood of reproduction, with females more likely to reproduce with long- than short-sworded males (independent of preference for such males in earlier choice tests). These results suggest that female association preferences are good indicators of female mate choice but that ornament characteristics of the male are also important
Mother-offspring recognition via contact calls in cattle, Bos taurus.
Individual recognition in gregarious species is fundamental in order to avoid misdirected parental investment. In ungulates, two very different parental care strategies have been identified: ‘hider’ offspring usually lie concealed in vegetation whereas offspring of ‘follower’ species remain with their mothers while they forage. These two strategies have been suggested to impact on mother-offspring vocal recognition, with unidirectional recognition of the mother by offspring occurring in hiders and bidirectional recognition in followers. In domestic cattle, Bos taurus, a facultative hider species, vocal communication and recognition have not been studied in detail under free-ranging conditions, where cows and calves can graze freely and where hiding behaviour can occur. We hypothesized that, as a hider species, cattle under these circumstances would display unidirectional vocal recognition. To test this hypothesis, we conducted playback experiments using mother-offspring contact calls. We found that cows were more likely to respond, by moving their ears and/or looking, turning or walking towards the loudspeaker, to calls of their own calves than to calls from other calves. Similarly, calves responded more rapidly, and were more likely to move their ears and/or look, turn or walk towards the loudspeaker, and to call back and/or meet their mothers, in response to calls from their own mothers than to calls from other females. Contrary to our predictions, our results suggest that mother-offspring vocal individual recognition is bidirectional in cattle. Additionally, mothers of younger calves tended to respond more strongly to playbacks than mothers of older calves. Therefore, mother responses to calf vocalizations are at least partially influenced by calf age
Sensitization of lamina I spinoparabrachial neurons parallels heat hyperalgesia in the chronic constriction injury model of neuropathic pain
It has been proposed that spinal lamina I neurons with ascending axons that project to the midbrain play a crucial role in hyperalgesia. To test this hypothesis the quantitative properties of lamina I spinoparabrachial neurons in the chronic constriction injury (CCI) model of neuropathic pain were compared to those of unoperated and sham-operated controls. Behavioural testing showed that animals with a CCI exhibited heat hyperalgesia within 4 days of the injury, and this hyperalgesia persisted throughout the 14-day post-operative testing period. In the CCI, nociceptive lamina I spinoparabrachial neurons had heat thresholds that were significantly lower than controls (43.0 ± 2.8°C vs. 46.7 ± 2.6°C; P < 10−4, ANOVA). Nociceptive lamina I spinoparabrachial neurons were also significantly more responsive to graded heat stimuli in the CCI, compared to controls (P < 0.02, 2-factor repeated-measures ANOVA), and increased after-discharges were also observed. Furthermore, the heat-evoked stimulus–response functions of lamina I spinoparabrachial neurons in CCI animals co-varied significantly (P < 0.03, ANCOVA) with the amplitude of heat hyperalgesia determined behaviourally. Taken together these results are consistent with the hypothesis that lamina I spinoparabrachial neurons have an important mechanistic role in the pathophysiology of neuropathic pain
Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats
Management and technical approaches that achieve a sustainable level of fish production while at the same time minimizing or limiting the wider ecological effects caused through fishing gear contact with the seabed might be considered to be ‘best practice’. To identify future knowledge-needs that would help to support a transition towards the adoption of best practices for trawling, a prioritization exercise was undertaken with a group of 39 practitioners from the seafood industry and management, and 13 research scientists who have an active research interest in bottom-trawl and dredge fisheries. A list of 108 knowledge-needs related to trawl and dredge fisheries was developed in conjunction with an ‘expert task force’. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge-need. The top 25 knowledge-needs are presented, as scored separately by practitioners and scientists. There was considerable consistency in the priorities identified by these two groups. The top priority knowledge-need to improve current understanding on the distribution and extent of different habitat types also reinforced the concomitant need for the provision and access to data on the spatial and temporal distribution of all forms of towed bottom-fishing activities. Many of the other top 25 knowledge-needs concerned the evaluation of different management approaches or implementation of different fishing practices, particularly those that explore trade-offs between effects of bottom trawling on biodiversity and ecosystem services and the benefits of fish production as food.Fil: Kaiser, Michel J.. Bangor University; Reino UnidoFil: Hilborn, Ray. University of Washington; Estados UnidosFil: Jennings, Simon. Fisheries and Aquaculture Science; Reino UnidoFil: Amaroso, Ricky. University of Washington; Estados UnidosFil: Andersen, Michael. Danish Fishermen; DinamarcaFil: Balliet, Kris. Sustainable Fisheries Partnership; Estados UnidosFil: Barratt, Eric. Sanford Limited; Nueva ZelandaFil: Bergstad, Odd A. Institute of Marine Research; NoruegaFil: Bishop, Stephen. Independent Fisheries Ltd; Nueva ZelandaFil: Bostrom, Jodi L. Marine Stewardship Council; Reino UnidoFil: Boyd, Catherine. Clearwater Seafoods; CanadáFil: Bruce, Eduardo A. Friosur S.A.; ChileFil: Burden, Merrick. Marine Conservation Alliance; Estados UnidosFil: Carey, Chris. Independent Fisheries Ltd.; Estados UnidosFil: Clermont, Jason. New England Aquarium; Estados UnidosFil: Collie, Jeremy S. University of Rhode Island,; Estados UnidosFil: Delahunty, Antony. National Federation of Fishermen; Reino UnidoFil: Dixon, Jacqui. Pacific Andes International Holdings Limited; ChinaFil: Eayrs, Steve. Gulf of Maine Research Institute; Estados UnidosFil: Edwards, Nigel. Seachill Ltd.; Reino UnidoFil: Fujita, Rod. Environmental Defense Fund; Reino UnidoFil: Gauvin, John. Alaska Seafood Cooperative; Estados UnidosFil: Gleason, Mary. The Nature Conservancy; Estados UnidosFil: Harris, Brad. Alaska Pacific University; Estados UnidosFil: He, Pingguo. University of Massachusetts Dartmouth; Estados UnidosFil: Hiddink, Jan G. Bangor University; Reino UnidoFil: Hughes, Kathryn M. Bangor University; Reino UnidoFil: Inostroza, Mario. EMDEPES; ChileFil: Kenny, Andrew. Fisheries and Aquaculture Science; Reino UnidoFil: Kritzer, Jake. Environmental Defense Fund; Estados UnidosFil: Kuntzsch, Volker. Sanford Limited; Estados UnidosFil: Lasta, Mario. Diag. Montegrande N° 7078. Mar del Plata; ArgentinaFil: Lopez, Ivan. Confederacion Española de Pesca; EspañaFil: Loveridge, Craig. South Pacific Regional Fisheries Management Organisation; Nueva ZelandaFil: Lynch, Don. Gorton; Estados UnidosFil: Masters, Jim. Marine Conservation Society; Reino UnidoFil: Mazor, Tessa. CSIRO Marine and Atmospheric Research; AustraliaFil: McConnaughey, Robert A. US National Marine Fisheries Service; Estados UnidosFil: Moenne, Marcel. Pacificblu; ChileFil: Francis. Marine Scotland Science; Reino UnidoFil: Nimick, Aileen M. Alaska Pacific University; Estados UnidosFil: Olsen, Alex. A. Espersen; DinamarcaFil: Parker, David. Young; Reino UnidoFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Penney, Christine. Clearwater Seafoods; CanadáFil: Pierce, David. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Pitcher, Roland. CSIRO Marine and Atmospheric Research; AustraliaFil: Pol, Michael. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Richardson, Ed. Pollock Conservation Cooperative; Estados UnidosFil: Rijnsdorp, Adriaan D. Wageningen IMARES; Países BajosFil: Rilatt, Simon. A. Espersen; DinamarcaFil: Rodmell, Dale P. National Federation of Fishermen's Organisations; Reino UnidoFil: Rose, Craig. FishNext Research; Estados UnidosFil: Sethi, Suresh A. Alaska Pacific University; Estados UnidosFil: Short, Katherine. F.L.O.W. Collaborative; Nueva ZelandaFil: Suuronen, Petri. Fisheries and Aquaculture Department; ItaliaFil: Taylor, Erin. New England Aquarium; Estados UnidosFil: Wallace, Scott. The David Suzuki Foundation; CanadáFil: Webb, Lisa. Gorton's Inc.; Estados UnidosFil: Wickham, Eric. Unit four –1957 McNicoll Avenue; CanadáFil: Wilding, Sam R. Monterey Bay Aquarium; Estados UnidosFil: Wilson, Ashley. Department for Environment; Reino UnidoFil: Winger, Paul. Memorial University Of Newfoundland; CanadáFil: Sutherland, William J. University of Cambridge; Reino Unid
- …