6 research outputs found

    Consensus-based statements for the management of mitochondrial stroke-like episodes

    Get PDF
    Background: Focal-onset seizures and encephalopathy are prominent features of a stroke-like episode, which is a severe neurological manifestation associated with subtypes of mitochondrial disease. Despite more than 30 years of research, the acute treatment of stroke-like episodes remains controversial.Methods: We used the modified Delphi process to harness the clinical expertise of a group of mitochondrial disease specialists from five European countries to produce consensus guidance for the acute management of stroke-like episodes and commonly associated complications.Results: Consensus on a new definition of mitochondrial stroke-like episodes was achieved and enabled the group to develop diagnostic criteria based on clinical features, neuroimaging and/or electroencephalogram findings. Guidelines for the management of strokelike episodes were agreed with aggressive seizure management strongly recommended at the outset of stroke-like episodes.Conclusions: Our consensus statement defines stroke-like episodes in terms of an epileptic encephalopathy and we have used this to revise both diagnostic criteria and guidelines for management. A prospective, multi-centre, randomised controlled trial is required for evaluating the efficacy of any compound on modifying the trajectory of stroke-like episodes.</p

    Factors associated with the severity of COVID-19 outcomes in people with neuromuscular diseases: Data from the International Neuromuscular COVID-19 Registry

    No full text
    BACKGROUND AND PURPOSE: Clinical outcome information on patients with neuromuscular diseases (NMDs) who have been infected with SARS-CoV-2 is limited. The aim of this study was to determine factors associated with the severity of COVID-19 outcomes in people with NMDs. METHODS: Cases of NMD, of any age, and confirmed/presumptive COVID-19, submitted to the International Neuromuscular COVID-19 Registry up to 31 December 2021, were included. A mutually exclusive ordinal COVID-19 severity scale was defined as follows: (1) no hospitalization; (2) hospitalization without oxygenation; (3) hospitalization with ventilation/oxygenation; and (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs) for severe outcome, adjusting for age, sex, race/ethnicity, NMD, comorbidities, baseline functional status (modified Rankin scale [mRS]), use of immunosuppressive/immunomodulatory medication, and pandemic calendar period. RESULTS: Of 315 patients from 13 countries (mean age 50.3 [±17.7] years, 154 [48.9%] female), 175 (55.5%) were not hospitalized, 27 (8.6%) were hospitalized without supplemental oxygen, 91 (28.9%) were hospitalized with ventilation/supplemental oxygen, and 22 (7%) died. Higher odds of severe COVID-19 outcomes were observed for: age ≥50 years (50-64 years: OR 2.4, 95% confidence interval [CI] 1.33-4.31; >64 years: OR 4.16, 95% CI 2.12-8.15; both vs. <50 years); non-White race/ethnicity (OR 1.81, 95% CI 1.07-3.06; vs. White); mRS moderately severe/severe disability (OR 3.02, 95% CI 1.6-5.69; vs. no/slight/moderate disability); history of respiratory dysfunction (OR 3.16, 95% CI 1.79-5.58); obesity (OR 2.24, 95% CI 1.18-4.25); ≥3 comorbidities (OR 3.2, 95% CI 1.76-5.83; vs. ≤2; if comorbidity count used instead of specific comorbidities); glucocorticoid treatment (OR 2.33, 95% CI 1.14-4.78); and Guillain-Barré syndrome (OR 3.1, 95% CI 1.35-7.13; vs. mitochondrial disease). CONCLUSIONS: Among people with NMDs, there is a differential risk of COVID-19 outcomes according to demographic and clinical characteristics. These findings could be used to develop tailored management strategies and evidence-based recommendations for NMD patients

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect similar to 15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management.We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions.We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' similar to 56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a similar to 59% 'solved' and similar to 13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research.In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.Wilson et al. present the findings of an international partnership established to study genetic causes of neuromuscular diseases in under-represented diverse populations from 12 low-middle income sites. A genetic cause was identified in similar to 55% of cases and similar to 30% of variants were novel, improving understanding of neuromuscular disease genetics.Functional Genomics of Muscle, Nerve and Brain Disorder
    corecore