76 research outputs found

    Spinning-off and joining ventures in microbiology

    Get PDF

    Molecular tools for breeding basidiomycetes

    Get PDF
    The industrial production of edible basidiomycetes is increasing every year as a response to the increasing public demand of them because of their nutritional properties. About a dozen of fungal species can be currently produced for food with sound industrial and economic bases. Notwithstanding, this production is threatened by biotic and abiotic factors that make it necessary to improve the fungal strains currently used in industry. Breeding of edible basidiomycetes, however, has been mainly empirical and slow since the genetic tools useful in the selection of the new genetic material to be introduced in the commercial strains have not been developed for these fungi as it was for other organisms. In this review we will discuss the main genetic factors that should be considered to develop breeding approaches and tools for higher basidiomycetes. These factors are (i) the genetic system controlling fungal mating; (ii) the genomic structure and organisation of these fungi; and (iii) the identification of genes involved in the control of quantitative traits. We will discuss the weight of these factors using the oyster mushroom Pleurotus ostreatus as a model organism for most of the edible fungi cultivated industrially

    Basidiomycetes Telomeres – A Bioinformatics Approach

    Get PDF
    The bioinformatics analysis described in this paper allowed us to establish the type and the number of the telomere repeat unit in the basidiomycetes analyzed, to suggest the putative linkage groups in fungi where linkage maps are not available, to uncover misassembled telomere regions, and to reveal the preference for some gene models to be located at the subtelomeric regions and to uncover synteny among the subtelomere regions in the basidiomycetes analyzed.This work has been supported by funds of the AGL2008-05608-C02-01 of the Spanish National Plan of Scientific Research, the Bioethanol Euroinnova project of the Goverment of Navarre (Spain), by additional institutional support from the Public University of Navarre

    Genomics and transcriptomics characterization of genes expressed during postharvest at 4°C by the edible basidiomycete Pleurotus ostreatus

    Get PDF
    Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome, which was sequenced by the Joint Genome Institute, has become a model for lignin degradation and for fungal genomics and transcriptomics studies. The complete P. ostreatus genome contains 35 Mbp organized in 11 chromosomes, and two different haploid genomes have been individually sequenced. In this work, genomics and transcriptomics approaches were employed in the study of P. ostreatus under different physiological conditions. Specifically, we analyzed a collection ofexpressed sequence tags (EST) obtained from cut fruit bodies that had been stored at 4°C for 7 days (postharvest conditions). Studies of the 253 expressed clones that had been automatically and manually annotated provided a detailed picture of the life characteristics of the self-sustained fruit bodies. The results suggested a complex metabolism in which autophagy, RNA metabolism, and protein and carbohydrate turnover are increased. Genes involved in environment sensing and morphogenesis were expressed under these conditions. The data improve our understanding of the decay process in postharvest mushrooms and highlight the use of high-throughput techniques to construct models of living organisms subjected to different environmental conditions

    Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes

    Get PDF
    Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.This research was funded by Research Projects RTI2018-099371-B-I00 (MCIU, AEI, FEDER/UE) and AGL2015-66833-R (MINECO) of the Spanish National Research Programme, H2020 MUSA 727624 (EU), and by funds of the Public University of Navarre (UPNA)

    Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    Get PDF
    [EN] Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.European funds (European Regional Development Fund, ERDF); Spanish Ministerio de Economı´a y Competitividad; Junta de Andalucí

    Lifestyle Evolution And Peroxidase Diversity In Agaricales As Revealed By Comparative Genomics

    Get PDF
    Descripción de 1 páginas de la comunicación oral presentada en Oxizymes2022 10th edition of the international “Oxizymes” meeting. Siena, Italy, July 5-8, 2022Basidiomycetes of the class Agaricomycetes have developed complex enzymatic machineries that allow them to decompose plant polymers, including lignin. Within this group, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles in comparison with fungi from other orders. With the aim of shedding light on the evolution of lignocellulose-decaying lifestyles in Agaricales we conducted a comparative analysis of 52 Agaricomycetes genomes [1]. This study revealed that Agaricales possess a large diversity of hydrolytic and oxidative enzymes. Surprisingly, computer-assisted gene-family evolution analysis of these enzymes revealed that a few oxidoreductase families showed significantly higher evolutionary rates. Based on these gene families we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. According to this, we determined that changes in the oxidative enzymatic toolkit of ancestral Agaricales correlate with the evolution of their ability to grow not only on wood, but also on leaf and grass litter and decayed wood. In this context, the aboye families were analyzed and special attention was paid to peroxidases as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes responsible for lignin degradation. We identified a widespread presence of new ligninolytic peroxidase types in Agaricales, some of them not previously identified in this order, and others also not found in woodrottingPolyporales and other orders of Agaricomycetes. Peroxidase evolution was analyzed in Agaricomycetes by ancestral sequence reconstruction and several major evolutionary pathways were unveiled. The study of the newly identified peroxidases will provide insight into their role in the lignin degradation process. In fact, these studies have already been initiated with the expression and characterization of the first lignin peroxidase identified in Agaricales. [1] Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, et al., 2021, Mol Biol Evol, 38, 1428-1446.Projects/contracts BI02017-86559-R, BI02015-7369-JIN, AGL2014-55971-R, NSFgrant-1457721 , CEFOX-031 B0831 S, PIE-201620E081 , ANR-11-LABX-0002-01 , US-DOE-DE-AC02-05CH11231N

    El análisis de 52 genomas fúngicos aclara la evolución de los estilos de vida de los Agaricales

    Get PDF
    1 p.Los Agaricomycetes han desarrollado complejas maquinarias enzimáticas que les permiten descomponer los diferentes polímeros vegetales, incluida la lignina. Entre ellos, los Agaricales saprótrofos se caracterizan por su diversidad de hábitats y estilos de vida. El análisis de 52 genomas de Agaricomycetes aquí realizado revela que los Agaricales poseen una gran diversidad de enzimas hidrolíticas y oxidativas para la descomposición de la lignocelulosa. En base a las familias de genes con mayor velocidad evolutiva (dominios de unión a celulosa, glicosil hidrolasa GH43, monooxigenasas líticas de polisacáridos, peroxidasas ligninolíticas, enzimas de la superfamilia de glucosa-metanol-colina oxidasas/deshidrogenasas, lacasas y peroxigenasas), reconstruimos los estilos de vida de los ancestros que dieron lugar a los actuales Agaricomycetes degradadores de lignocelulosa. Los cambios en el conjunto de herramientas enzimáticas de los Agaricales ancestrales se correlacionaron con la evolución de su capacidad para crecer no solo sobre madera, sino también sobre hojarasca de bosques y madera en descomposición, siendo los descomponedores de la hojarasca de praderas el grupo ecofisiológico más reciente. En este contexto, las anteriores familias de enzimas se analizaron en relación con la diversidad de estilos de vida. Las peroxidasas aparecen como un componente central del set enzimático de los Agaricomycetes saprotrófos, consistente con su papel esencial en la degradación de la lignina y sus altas tasas evolutivas. Esto incluye no solo expansiones/pérdidas de genes de peroxidasas, sino también la presencia generalizada en Agaricales de nuevos tipos de peroxidasas que no se encuentran en Polyporales degradadores de madera, y en otros órdenes de Agaricomycetes.Projectos/contratos BIO2017-86559-R, BIO2015-73697-JIN, AGL2014-55971-R, NSF-grant-1457721, CEFOX-031B0831B, PIE-201620E081, ANR-11-LABX-0002-01, US-DOE-DE-AC02-05CH11231Peer reviewe
    corecore