174 research outputs found

    Study of the Electromagnetic Interference Generated by Wireless Power Transfer Systems

    Get PDF
    This paper presents a study related with measuring of radio frequency emissions. The purpose is to determine the level of interference generated by wireless power transfer equipment in a specific frequency range, and to compare those levels to the existing standards. The technology of wireless power transfer, especially for electric vehicles batteries charging, is rapidly developing in the recent years. An increasing use of this technology in industrial and consumer electronic products has raised concerns about the possible unfavorable health-effects onto the human being. Another concern is raised from the high intensity fields produced by wireless power transfer systems which will generate highly undesired influence on other electrical and electronic equipment. As a protection against the potential health effects, the governments imposed limits on the occupational and general public exposure to the radio frequencies. These limitations are set out in national and international safety guidelines, standards and regulations. The measurement and evaluation of the human exposure to electromagnetic fields are essential to guarantee occupational and general public safety

    Laurus nobilis (laurel) aqueous leaf extract's toxicological and anti-tumor activities in HPV16-transgenic mice

    Get PDF
    Cancers induced by human papillomavirus (HPV) infection remain a significant public health threat, fueling the study of new therapies. Laurel (Laurus nobilis) compounds and extracts recently showed in vitro activity against HPV-transformed cell lines. This work aims to evaluate the in vivo efficacy and hepatic toxicity of a laurel extract in a transgenic mouse model of HPV16-induced cancer. The extract was administered in drinking water (20 mg per animal per day) for three consecutive weeks, using four experimental groups (n = 10) (group I: HPV16−/− without treatment, group II: treated HPV16−/−, group III: HPV16+/− without treatment and group IV: treated HPV16+/−). Following the treatment period, animals were sacrificed and skin samples were used to classify skin lesions histologically. Toxicological parameters included hematological and biochemical blood markers, splenic and hepatic histology and hepatic oxidative stress. The extract did not prevent the progression of HPV16-induced cutaneous lesions in this model. The treated wildtype animals showed mild hepatitis, while transgenic animals suffered weight loss. However, there were no changes concerning hematological, biochemical and hepatic oxidative stress markers.This work was supported by: Integrative Research in Environment, Agro-Chains and Technology no. NORTE-01- 0145-FEDER-000017, in its line of research entitled ISAC, cofinanced by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020). European Investment Funds by FEDER/COMPETE/ POCI– Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. This study was also funded by Liga Portuguesa Contra o Cancro, by the Research Center of the Portuguese Institute of Oncology of Porto (CI-IPOP 37-2016), by project POCI-01-0145- FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE), project POCI-01-0145-FEDER-006958 and UID/AGR/04033/2013, funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT – Fundação para a Ciência e a Tecnologia; Rui M. Gil da Costa was funded by grant number SFRH/BPD/85462/2012 from FCT, funded by the Portuguese Government and the Social European Fund. The authors are also grateful to FCT, Portugal and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/ 00690/2013), and to the Interreg España-Portugal for financial support through the project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio

    Euclid: On the reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

    Get PDF
    Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this work, we evaluate the impact of the reduced shear approximation and magnification bias, on the information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities, in high-magnification regions. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculate the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. These effects cause significant biases in Omega_m, n_s, sigma_8, Omega_DE, w_0, and w_a of -0.51 sigma, -0.36 sigma, 0.37 sigma, 1.36 sigma, -0.66 sigma, and 1.21 sigma, respectively. We then show that these lensing biases interact with another systematic: the intrinsic alignment of galaxies. Accordingly, we develop the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant

    A dc-link voltage stability analysis technique for hybrid five-phase open-end winding drives

    Get PDF
    This paper studies the dc-link voltage stability for a hybrid five-phase open-end winding (OeW) drive operating under carrier based (CB) pulse-width modulation (PWM). The drive consists of a five-phase induction machine, supplied using one three-level and one two-level voltage source inverter (VSI). This configuration is analysed for the case of isolated dc-link rails, while dc-link voltage ratio is considered as an additional degree of freedom. It is demonstrated that different dc-link voltage ratios lead to the different overall number of voltage levels across stator windings. Modulation strategies are investigated and their performances are analysed from the dc-link voltages stability point of view. An analytical method for dc-link voltage stability analysis is presented. Results show that the four-level configuration always leads to stable dc-link voltages, regardless of the modulation strategy. On the other hand, if six-level configuration is combined with modulation strategies that lead to an optimal harmonic performance, not all dc-link capacitor voltages will be in balance depending on the operating conditions

    Euclid : Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear

    Get PDF
    Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the Universe. Unfortunately, much of the cosmological information is encoded on small scales, where the clustering of dark matter and the effects of astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the signal on small scales and find that they result in significantly different predictions. Moreover, the different non-linear corrections lead to biased parameter estimates, especially when the analysis is extended into the highly non-linear regime, with the Hubble constant, H0, and the clustering amplitude, σ8, affected the most. Improvements in the modelling of non-linear scales will therefore be needed if we are to resolve the current tension with more and better data. For a given prescription for the non-linear power spectrum, using different corrections for baryon physics does not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the accuracy of the recipes that account for non-linear structure formation, as well as the modelling of the impact of astrophysical processes that redistribute the baryons.Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the Universe. Unfortunately, much of the cosmological information is encoded on small scales, where the clustering of dark matter and the effects of astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the signal on small scales and find that they result in significantly different predictions. Moreover, the different non-linear corrections lead to biased parameter estimates, especially when the analysis is extended into the highly non-linear regime, with the Hubble constant, H-0, and the clustering amplitude, sigma (8), affected the most. Improvements in the modelling of non-linear scales will therefore be needed if we are to resolve the current tension with more and better data. For a given prescription for the non-linear power spectrum, using different corrections for baryon physics does not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the accuracy of the recipes that account for non-linear structure formation, as well as the modelling of the impact of astrophysical processes that redistribute the baryons.Peer reviewe
    corecore