39 research outputs found

    Drought- Conditioning of Quaking Aspen (Populus tremuloides Michx.) Seedlings During Nursery Production Modifies Seedling Anatomy and Physiology

    Get PDF
    In the western US, quaking aspen (Populus tremuloides Michx.) regenerates primarily by root suckers after disturbances such as low to moderate severity fires. Planting aspen seedlings grown from seed may provide a mechanism to improve restoration success and genetic diversity on severely disturbed sites. However, few studies have examined the use of container-grown aspen seedlings for restoration purposes from both the outplanting and nursery production perspective. Thus, the purpose of this novel study was to examine how alterations in irrigation levels during nursery production across three seed sources would impact seedling performance attributes on harsh, dry outplanting sites. Irrigation treatments were based on three irrigation levels, determined gravimetrically: High = 90%, Medium = 80%, and Low = 70% of container capacity. The three seed sources represented a latitudinal gradient across the aspen range (New Mexico, Utah, and Alberta). Carbon isotope analysis indicated irrigation treatments were effective in creating higher levels of water stress for both the Low and Medium irrigation levels compared to seedlings under the High irrigation level. Seedlings subject to the Low irrigation level were found to induce greater height, higher photosynthetic rates, larger percentages of hydraulically active xylem, and faster xylem flow velocities compared to the High irrigation level. The lack of an interaction between irrigation treatments and seed source for nearly all response variables suggests that nursery conditioning via irrigation limitations may be effective for a range of aspen seed sources

    Early pine root anatomy and primary and lateral root formation are affected by container size: implications in dry-summer climates

    Get PDF
    Although the presence of root anatomical structures of young Pinus ponderosa seedlings grown in containers of contrasting volume (164 vs. 7000 cm3) was similar, seedlings reared 60 days in the large container had more vascular cambium although the xylem thickness was similar. In addition, seedlings in large containers had nearly twice as many resin ducts within the vascular cambium as their cohorts in small containers. Taproot length closely matched container depth. Though lateral root emission rates were similar between container sizes, large container seedlings had more than 2X the number of lateral roots as those from small containers. These differences in morphophysiological characteristics may be important to seedling establishment on sites that experience dry summer conditions, or for seedlings destined to drier, harsher sites. Further work to elucidate the ramifications of these morphophysiological differences on seedling establishment is warranted

    Meeting Forest Restoration Challenges: Using the Target Plant Concept

    Get PDF
    Meeting forest restoration challenges relies on successful establishment of plant materials (e.g., seeds, cuttings, rooted cuttings, or seedlings, etc.; hereafter simply “seedlingsâ€). The Target Plant Concept (TPC) provides a flexible framework that nursery managers and their clients can use to improve the survival and growth of these seedlings. The key tenets of the TPC are that (1) more emphasis is placed on how seedlings perform on the outplanting site rather than on nursery performance, (2) a partnership exists between the nursery manager and the client to determine the target plant based on site characteristics, and (3) that information gleaned from post-planting monitoring is used to improve subsequent plant materials. Through the nursery manager–client partnership, answers to a matrix of interrelated questions define a target plant to meet the reforestation or forest restoration objectives. These questions focus on project objectives; site characteristics, limiting factors, and possible mitigation efforts; species and genetic criteria; stocktype; outplanting tools and techniques; and outplanting window. We provide examples from the southeastern United States, Hawai‛i, and Lebanon on how the TPC process has improved performance of seedlings deployed for reforestation and forest restoration

    Blocking Zika virus vertical transmission.

    Get PDF
    The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    corecore