77 research outputs found

    An X-ray polarimeter for hard X-ray optics

    Get PDF
    Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sensitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.Comment: 12 pages, 7 figure

    IXPE Mission System Concept and Development Status

    Get PDF
    The Goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mi SMEX), is to expand understanding of high-energy astrophysical processes and sources, in support of NASAs first science objective in Astrophysics: Discover how the universe works. IXPE, an international collaboration, will conduct X-ray imaging polarimetry for multiple categories of cosmic X-ray sources such as neutron stars, stellar-mass black holes, supernova remnants and active galactic nuclei. The Observatory uses a single science operational mode capturing the X-ray data from the targets. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three X-ray telescopes each consisting of a polarization-sensitive, gas pixel X-ray detector, paired with its corresponding grazing incidence mirror module assembly (MMA). A deployable boom provides the correct separation (focal length) between the detector units (DU) and MMAs. These payload elements are supported by the IXPE spacecraft which is derived from the BCP-small spacecraft architecture. This paper summarizes the IXPE mission science objectives, updates the Observatory implementation concept including the payload and spacecraft ts and summarizes the mission status since last years conference

    Enalapril reduces proliferation and hyaluronic acid release in orbital fibroblasts

    Get PDF
    BACKGROUND: Orbital fibroblast proliferation and hyaluronic acid (HA) release are responsible for some of the clinical features of Graves' ophthalmopathy (GO). Thus, inhibition of these processes may be a possible therapeutic approach to this syndrome. Enalapril, a widely used antihypertensive drug, was found to have some inhibitory actions on fibroblast proliferation in cheloid scars in vivo, based on which we investigated its effects in primary cultures of orbital fibroblasts from GO patients and control subjects. METHODS: Primary cultures of GO and control fibroblasts were treated with enalapril or with a control compound (lisinopril). Cell proliferation assays, lactate dehydrogenase release assays (as a measure of cell necrosis), apoptosis assays, and measurement of HA in the cell media were performed. RESULTS: Enalapril significantly reduced cell proliferation in both GO and control fibroblasts. Because enalapril did not affect cell necrosis and apoptosis, we concluded that its effects on proliferation reflected an inhibition of cell growth and/or a delay in cell cycle. Enalapril significantly reduced HA concentrations in the media from both GO and control fibroblasts. CONCLUSIONS: Enalapril has antiproliferative and HA suppressing actions in both GO and control fibroblasts. Clinical studies are needed to investigate whether enalapril has any effects in vivo in patients with GO

    POLARIX: a pathfinder mission of X-ray polarimetry

    Full text link
    Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 arcmin Ă—\times 15 arcmin and with an energy resolution of 20 % at 6 keV. The Minimum Detectable Polarization is 12 % for a source having a flux of 1 mCrab and 10^5 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher.The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75 % open to the community while 25 % + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument.Comment: 42 pages, 28 figure

    A photoelectric polarimeter for XEUS: a new window in x-ray sky

    Get PDF
    XEUS is a large area telescope aiming to rise X-ray Astronomy to the level of Optical Astronomy in terms of collecting areas. It will be based on two satellites, locked on a formation flight, one with the optics, one with the focal plane. The present design of the focal plane foresees, as an auxiliary instrument, the inclusion of a Polarimeter based on a Micropattern Chamber. We show how such a device is capable to solve open problems on many classes of High Energy Astrophysics objects and to use X-ray sources as a laboratory for a substantial progress on Fundamental Physics.Comment: 12 pages, 7 figure

    Bears in Human-Modified Landscapes: The Case Studies of the Cantabrian, Apennine, and Pindos Mountains

    Get PDF
    Edited by Vincenzo Penteriani and Mario Melletti.-- Part III - Human–Bear Coexistence.-- This material has been published in "Bears of the World. Ecology, Conservation and Management" by / edited by Vincenzo Penteriani and Mario Melletti / Cambridge University Press. This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.Brown bears Ursus arctos were historically persecuted and almost eradicated from southern Europe in the twentieth century as a result of hunting and direct persecution. The effects of human-induced mortality were exacerbated by other threats, such as habitat loss and fragmentation, due to the expansion of human populations. As a result, nowadays there are only small fragmented populations of bears in southern Europe. Brown bears in the Cantabrian (north-western Spain), Apennine (central Italy), and Pindos (north-western Greece) mountains represent three examples of small and threatened bear populations in human-modified landscapes. Most of their range is characterized by high human densities, widespread agricultural activities, livestock raising and urban development, connected by dense networks of transport infrastructures. This has resulted in a reduction of continuous habitat suitable for the species. Here, we summarize the past and present histories and fates of these three populations as examples on how the coexistence of bears and people in human-modified landscapes can take different turns depending on human attitudes

    Human behaviour can trigger large carnivore attacks in developed countries

    Get PDF
    The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans in North America and Europe. Although rare compared to human fatalities by other wildlife, the media often overplay large carnivore attacks on humans, causing increased fear and negative attitudes towards coexisting with and conserving these species. Although large carnivore populations are generally increasing in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks by large carnivores. Here we show that an increasing number of people are involved in outdoor activities and, when doing so, some people engage in risk-enhancing behaviour that can increase the probability of a risky encounter and a potential attack. About half of the well-documented reported attacks have involved risk-enhancing human behaviours, the most common of which is leaving children unattended. Our study provides unique insight into the causes, and as a result the prevention, of large carnivore attacks on people. Prevention and information that can encourage appropriate human behaviour when sharing the landscape with large carnivores are of paramount importance to reduce both potentially fatal human-carnivore encounters and their consequences to large carnivores.Peer reviewe

    POLARIX: a small mission of x-ray polarimetry

    Get PDF
    X-Ray Polarimetry can be now performed by using a Micro Pattern Gas Chamber in the focus of a telescope. It requires large area optics for most important scientific targets. But since the technique is additive a dedicated mission with a cluster of small telescopes can perform many important measurements and bridge the 40 year gap between OSO-8 data and future big telescopes such as XEUS. POLARIX has been conceived as such a pathfinder. It is a Small Satellite based on the optics of JET-X. Two telescopes are available in flight configuration and three more can be easily produced starting from the available superpolished mandrels. We show the capabilities of such a cluster of telescopes each equipped with a focal plane photoelectric polarimeter and discuss a few alternative solutions.Comment: 9 pages, 5 figure

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Lopinavir/Ritonavir and Darunavir/Cobicistat in Hospitalized COVID-19 Patients: Findings From the Multicenter Italian CORIST Study

    Get PDF
    Background: Protease inhibitors have been considered as possible therapeutic agents for COVID-19 patients. Objectives: To describe the association between lopinavir/ritonavir (LPV/r) or darunavir/cobicistat (DRV/c) use and in-hospital mortality in COVID-19 patients. Study Design: Multicenter observational study of COVID-19 patients admitted in 33 Italian hospitals. Medications, preexisting conditions, clinical measures, and outcomes were extracted from medical records. Patients were retrospectively divided in three groups, according to use of LPV/r, DRV/c or none of them. Primary outcome in a time-to event analysis was death. We used Cox proportional-hazards models with inverse probability of treatment weighting by multinomial propensity scores. Results: Out of 3,451 patients, 33.3% LPV/r and 13.9% received DRV/c. Patients receiving LPV/r or DRV/c were more likely younger, men, had higher C-reactive protein levels while less likely had hypertension, cardiovascular, pulmonary or kidney disease. After adjustment for propensity scores, LPV/r use was not associated with mortality (HR = 0.94, 95% CI 0.78 to 1.13), whereas treatment with DRV/c was associated with a higher death risk (HR = 1.89, 1.53 to 2.34, E-value = 2.43). This increased risk was more marked in women, in elderly, in patients with higher severity of COVID-19 and in patients receiving other COVID-19 drugs. Conclusions: In a large cohort of Italian patients hospitalized for COVID-19 in a real-life setting, the use of LPV/r treatment did not change death rate, while DRV/c was associated with increased mortality. Within the limits of an observational study, these data do not support the use of LPV/r or DRV/c in COVID-19 patients
    • …
    corecore