388 research outputs found

    Is Parkinson's disease a vesicular dopamine storage disorder?: Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum

    Full text link
    The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson’s disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [ 3H]dihydrotetrabenazine were profoundly reduced in PD by 87–90% and 71– 80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in P

    Early paradoxical increase of dopamine: A neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys

    Full text link
    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, includin g monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.This work was funded by grants from the Ministerio de Economía y Competitividad: SAF2015-67239-P; Instituto de Salud Carlos III (CIBERNED) SAF2016-78207, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS PIE14/00034 to JAO and by the chair UAM-Fundación Tatiana Pérez de Guzmán el Bueno to C

    Dopamine Innervation in the Thalamus: Monkey versus Rat

    Get PDF
    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease

    Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens

    Get PDF
    Cocaine (COC) inhibits the re-uptake of dopamine. However, the dopamine response to COC also depends on dopamine inside storage vesicles. The aim of this study was to investigate whether rats that differentially respond to COC differ in their dopaminergic storage capacity of the nucleus accumbens. Total and vesicular levels of accumbal dopamine as well as accumbal vesicular monoamine transporter-2 levels were established in high (HR) and low responders (LR) to novelty rats. Moreover, the effects of reserpine (RES) on the COC-induced increase of extracellular accumbal dopamine were investigated. HR displayed higher accumbal levels of total and vesicular dopamine than LR. Moreover, HR displayed more accumbal vesicular monoamine transporters-2 than LR. COC increased extracellular accumbal dopamine more strongly in HR than in LR. A low dose of RES prevented the COC-induced increase of accumbal dopamine in LR, but not in HR. A higher dose of RES was required to inhibit the COC-induced increase of accumbal dopamine in HR. These data demonstrate that HR were marked by a larger accumbal dopaminergic storage pool than LR. It is hypothesized that HR are more sensitive to COC than LR, because COC can release more dopamine from accumbal storage vesicles in HR than in LR

    Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants

    Get PDF
    Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic beta cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.Peer reviewe

    The psychostimulant (±)-cis-4,4'-dimethylaminorex (4,4'-DMAR) interacts with human plasmalemmal and vesicular monoamine transporters

    Get PDF
    (±)-cis-4,4'-Dimethylaminorex (4,4'-DMAR) is a new psychoactive substance (NPS) that has been associated with 31 fatalities and other adverse events in Europe between June 2013 and February 2014. We used in vitro uptake inhibition and transporter release assays to determine the effects of 4,4'-DMAR on human high-affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). In addition, we assessed its binding affinities to monoamine receptors and transporters. Furthermore, we investigated the interaction of 4,4'-DMAR with the vesicular monoamine transporter 2 (VMAT2) in rat phaeochromocytoma (PC12) cells and synaptic vesicles prepared from human striatum. 4,4'-DMAR inhibited uptake mediated by human DAT, NET or SERT, respectively in the low micromolar range (IC; 50; values < 2 μM). Release assays identified 4,4'-DMAR as a substrate type releaser, capable of inducing transporter-mediated reverse transport via DAT, NET and SERT. Furthermore, 4,4'-DMAR inhibited both the rat and human isoforms of VMAT2 at a potency similar to 3,4-methylenedioxymethylamphetamine (MDMA). This study identified 4,4'-DMAR as a potent non-selective monoamine releasing agent. In contrast to the known effects of aminorex and 4-methylaminorex, 4,4'-DMAR exerts profound effects on human SERT. The latter finding is consistent with the idea that fatalities associated with its abuse may be linked to monoaminergic toxicity including serotonin syndrome. The activity at VMAT2 suggests that chronic abuse of 4,4'-DMAR may result in long-term neurotoxicity

    The psychostimulant (±)-cis-4,4'-dimethylaminorex (4,4'-DMAR) interacts with human plasmalemmal and vesicular monoamine transporters

    Get PDF
    (±)-cis-4,4'-Dimethylaminorex (4,4'-DMAR) is a new psychoactive substance (NPS) that has been associated with 31 fatalities and other adverse events in Europe between June 2013 and February 2014. However, the pharmacology of 4,4'-DMAR remains largely unexplored. We used in vitro uptake inhibition and transporter release assays to determine the effects of 4,4'-DMAR on human high-affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). In addition, we assessed its binding affinities to monoamine receptors and transporters. Furthermore, we investigated the interaction of 4,4'-DMAR with the vesicular monoamine transporter 2 (VMAT2) in rat phaeochromocytoma (PC12) cells and synaptic vesicles prepared from human striatum. 4,4'-DMAR inhibited uptake mediated by human DAT, NET or SERT, respectively in the low micromolar range (IC50 values < 2 µM). Release assays identified 4,4'-DMAR as a substrate type releaser, capable of inducing transporter-mediated reverse transport via DAT, NET and SERT. Furthermore, 4,4'-DMAR inhibited both the rat and human isoforms of VMAT2 at a potency similar to 3,4-methylenedioxymethylamphetamine (MDMA).This study identified 4,4'-DMAR as a potent non-selective monoamine releasing agent. In contrast to the known effects of aminorex and 4-methylaminorex, 4,4'-DMAR exerts profound effects on human SERT. The latter finding is consistent with the idea that fatalities associated with its abuse may be linked to monoaminergic toxicity including serotonin syndrome. The activity at VMAT2 suggests that chronic abuse of 4,4'-DMAR may result in long-term neurotoxicity

    Behavioral and Dopamine Transporter Binding Properties of the Modafinil Analog (S, S)-CE-158: Reversal of the Motivational Effects of Tetrabenazine and Enhancement of Progressive Ratio Responding

    Full text link
    Rationale: Atypical dopamine (DA) transport blockers such as modafinil and its analogs may be useful for treating motivational symptoms of depression and other disorders. Previous research has shown that the DA depleting agent tetrabenazine can reliably induce motivational deficits in rats, as evidenced by a shift towards a low-effort bias in effort-based choice tasks. This is consistent with human studies showing that people with major depression show a bias towards low-effort activities. Objectives: Recent studies demonstrated that the atypical DA transport (DAT) inhibitor (S)-CE-123 reversed tetrabenazine-induced motivational deficits, increased progressive ratio (PROG) lever pressing, and increased extracellular DA in the nucleus accumbens. In the present studies, a recently synthesized modafinil analog, (S, S)-CE-158, was assessed in a series of neurochemical and behavioral studies in rats. Results: (S, S)-CE-158 demonstrated the ability to reverse the effort-related effects of tetrabenazine and increase selection of high-effort PROG lever pressing in rats tested on PROG/chow feeding choice task. (S, S)-CE-158 showed a high selectivity for inhibiting DAT compared with other monoamine transporters, and systemic administration of (S, S)-CE-158 increased extracellular DA in the nucleus accumbens during the behaviorally active time course, which is consistent with the effects of (S)-CE-123 and other DAT inhibitors that enhance high-effort responding. Conclusions: These studies provide an initial neurochemical characterization of a novel atypical DAT inhibitor, and demonstrate that this compound is active in models of effort-related choice. This research could contribute to the development of novel compounds for the treatment of motivational dysfunctions in humans. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.The authors would like to acknowledge Eurofins DiscoverX Corporation (Fremont, CA)

    Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2

    Get PDF
    The regulation of mitochondrial quality has emerged as a central issue in neurodegeneration, diabetes, and cancer. We utilized repeated low-dose applications of the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+) over 2 weeks to study cellular responses to chronic mitochondrial stress. Chronic MPP+ triggered depletion of functional mitochondria resulting in diminished capacities for aerobic respiration. Inhibiting autophagy/mitophagy only partially restored mitochondrial content. In contrast, inhibiting activation of extracellular signal-regulated protein kinases conferred complete cytoprotection with full restoration of mitochondrial functional and morphological parameters, enhancing spare respiratory capacity in MPP+ co-treated cells above that of control cells. Reversal of mitochondrial injury occurred when U0126 was added 1 week after MPP+, implicating enhanced repair mechanisms. Chronic MPP+ caused a >90% decrease in complex I subunits, along with decreases in complex III and IV subunits. Decreases in respiratory complex subunits were reversed by co-treatment with U0126, ERK1/2 RNAi or transfection of dominant-negative MEK1, but only partially restored by degradation inhibitors. Chronic MPP+ also suppressed the de novo synthesis of mitochondrial DNA-encoded proteins, accompanied by decreased expression of the mitochondrial transcription factor TFAM. U0126 completely reversed each of these deficits in mitochondrial translation and protein expression. These data indicate a key, limiting role for mitochondrial biogenesis in determining the outcome of injuries associated with elevated mitophagy
    corecore