187 research outputs found

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF
    Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change

    Analysis of nucleation events in the European boundary layer using the regional aerosol-climate model REMO-HAM with a solar radiation-driven OH-proxy

    Get PDF
    This work describes improvements in the regional aerosol–climate model REMO-HAM in order to simulate more realistically the process of atmospheric new particle formation (NPF). A new scheme was implemented to simulate OH radical concentrations using a proxy approach based on observations and also accounting for the effects of clouds upon OH concentrations. Second, the nucleation rate calculation was modified to directly simulate the formation rates of 3 nm particles, which removes some unnecessary steps in the formation rate calculations used earlier in the model. Using the updated model version, NPF over Europe was simulated for the periods 2003–2004 and 2008–2009. The statistics of the simulated particle formation events were subsequently compared to observations from 13 ground-based measurement sites. The new model shows improved agreement with the observed NPF rates compared to former versions and can simulate the event statistics realistically for most parts of Europe

    Impacts of emission reductions on aerosol radiative effects

    Get PDF
    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m(-2) by 2030 with some regional increases, for example, over India (up to 0.84 W m(-2)). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m(-2) by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.Peer reviewe

    Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest

    Full text link
    We conducted a trenching experiment in a mountain forest in order to assess the contribution of theautotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that Wne roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 eZux was measured roughlybiweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the Wrst and secondgrowing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, Wne root biomass was decreased by 9% (not statistically diferent)and 30%, (statistically diVerent) respectively. When wecorrected for the additional trenched-plot CO2 eZux due to Wne root decomposition, the autotrophic soil respiration rose to »26% of the total soil respiration for the Wrst growing season, and to »44% for the second growing season.Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, ifmethodological side eVects are accounted for, only

    Modeling of synthesis and flow properties of propylene-diene copolymers

    Get PDF
    Copolymerization with nonconjugated dienes offers an attractive route for introducing long-chain branching in polypropylene. From a simplified set of rate equations for such copolymerization with a metallocene catalyst, we derive the probabilities of branch formation at different stages of the reaction in a semibatch reactor. Using these probabilities, we generate an ensemble of molecules via a Monte Carlo sampling. The knowledge of the branching topology and segment lengths allows us to compute the flow properties of the resins from computational rheology. We compare our model predictions with existing experimental data, namely the molar mass distribution and small amplitude oscillatory shear response, for a set of resins with varying diene content. The rheology data suggest that the entanglement time Ï.,e depends sensitively and in a well-defined fashion on the diene content

    Stability and change in health behaviours as predictors for disability pension: a prospective cohort study of Swedish twins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stability or changes of health behaviours have not been studied in association with incidence of disability pension (DP). The aims were to (1) investigate if stability or changes in health behaviours predict DP due to musculoskeletal diagnosis (MSD), (2) to evaluate if an association exists for DP in general, and (3) after taking familial confounding into account.</p> <p>Methods</p> <p>The study sample was 16,713 like-sexed twin individuals born in Sweden between 1935-1958 (6195 complete twin pairs) who had participated in two surveys 25 years apart, were alive, and not pensioned at the time of the latest survey. Cox proportional hazards analysis was used to assess the associations (hazard ratios (HR) with 95% confidence intervals (CI)) between stability and change in health behaviours (physical activity, tobacco and alcohol use, body mass index (BMI)), and number of pain locations collected at two time points 25 years apart and the incidence of DP until 2008.</p> <p>Results</p> <p>During the follow-up, 1843 (11%) individuals were granted DP with 747 of these due to MSD. A higher proportion of women were granted DP than men. Increase in BMI and stable use of tobacco products were predictors for DP due to MSD (HR 1.21-1.48) and DP in general (HR 1.10-1.41). The stability in the frequency of physical activity and increased frequency of physical activity were protective factors for DP due to MSD only when accounting for familial confounding. However, the number of pain locations (stability, increase, or decrease) was the strongest predictor for future DP due to MSD (HR 3.69, CI 2.99-4.56) and DP in general (HR 2.15, CI 1.92-2.42). In discordant pair analysis, the HRs for pain were lower, indicating potential familial confounding.</p> <p>Conclusions</p> <p>Health behaviours in adulthood, including an increase in pain locations were associated with the incidence of DP. The association between physical activity and DP was especially related to adulthood choices or habits, i.e., the individual decision about frequency of exercising. Thus, it is important to e.g. increase public awareness of the potential beneficial effects of exercise throughout life to avoid permanent exclusion from the labour market for medical reasons.</p

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe

    Sensory ways to indigenous multimodal literacies : Hands and feet tell the story

    Get PDF
    This chapter reports original research that asks the question: What are the ways of knowing, being, and communicating that are valued and practiced in Indigenous communities? Literacy curricula, internationally and nationally, typically do not take into account the multi-sensorial dimensions of non-Western forms of representation that go beyond narrow conceptions of print. For example, literacies are often conceived as drawing on print, visual, spatial, gestural, and audio modes, but the role of haptics and locomotion has typically received little attention. This chapter highlights examples of the multi-sensoriality of Indigenous literacies observed in participatory community research with an Indigenous school. It extends recent theories of sensory studies in the history and cultural anthropology of the senses, applying these principles to literacy education. Sensory literacies is a theoretical perspective that gives priority to the sensorial dimensions of the body and its role in communication in literacy practice, because without a sensing body, we cannot know about or communicate with the world. The data demonstrates how the forgotten role of the hands and feet in dominant theories of communication is central to Indigenous identity and literacies. Written by a white academic with an Indigenous researcher, the chapter problematises the privileging of narrow, logocentric, and Western forms of literacy and its implications for rethinking the role of the whole body in literacy and the literacy curriculum for Indigenous students

    Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat

    Get PDF
    Background and Aims Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality. Methods Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution. Results Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar. Conclusions Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose
    corecore