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Abstract This study presents analysis of in situ measurements conducted over the period 2005–2014 in
the Indian Himalayas to give a thorough overview of the factors and causes that drive aerosol properties.
Aerosol extensive properties (namely, particle number concentration, scattering coefficient, equivalent black
carbon, PM2.5, and PM10) have 1.5–2 times higher values in the early to late afternoon than during the night,
and a strong seasonality. The interannual variability is ±20% for both PM2.5 and total particle number
concentration. Analysis of the data shows statistically significant decreasing trends of �2.3 μg m�3 year�1

and�2.7 μgm�3 year�1 for PM2.5 and PM10, respectively, over the study period. Themountainous terrain site
(Mukteshwar, MUK) is primarily under the influence of air from the plains. This is due to convective transport
processes that are enhanced by local and mesoscale topography, leading to pronounced valley/mountain
winds and consequently to atmospheric boundary layer air lifting from the plains below. The transport from
plains is evident in seasonal-diurnal patterns observed at MUK. The timing of the patterns corresponds with
changes in turbulence and water vapor (q). According to our analysis, using these as proxies is a viable
method for examining boundary layer influence in the absence of direct atmospheric boundary layer height
measurements. Comparing the measurements with climate models shows that even regional climate models
have problems capturing the orographic influence accurately at MUK, highlighting the importance of
long-term direct measurements at multiple points to understand aerosol behavior in mountainous areas.

1. Introduction

Aerosols have been recognized as an important atmospheric constituent and an active climate forcing agent
since the 1970s (Charlson et al., 1992; Twomey, 1977). Aerosols are highly nonuniform in the troposphere due
to their relatively short residence times, variety of sources and sinks, and the chemical and microphysical
processing that occurs in the atmosphere. Over the years, in spite of consistent improvements in
instrumentation (both surface in situ and columnar measurements) and computational simulations, the
single largest uncertainty continuous to be aerosols in the estimation of globally averaged total radiative
forcing (Intergovernmental Panel on Climate Change, 2007, 2013). The uncertainty further increases over
regional scale by a factor about 2–4 across the regions—for example, black carbon (BC) estimations (Bond
et al., 2013).

Almost 50% of the Earth’s land surface is covered by hilly andmountainous terrain (Meybeck et al., 2001), and
27% is defined as mountainous (altitude>1,500 m above sea level, asl; Messerli & Ives, 1997). Thus, surface in
situ observatory stations on mountains and in remote areas are important in addition to measurements in
lowlands. High-altitude stations provide information on background aerosol properties in a larger area,
trends in aerosol concentrations and properties, and data for validating models. Moreover, these stations
are important in studying climatologies of aerosol radiative properties and the influence of regional sources
and processes. However, over mountainous terrain, the atmospheric structure becomes much more
complicated and even a universal definition of convective boundary layer (CBL) height over mountains
remains an ambiguous issue (De Wekker & Kossmann, 2015; Rotach et al., 2015; Serafin et al., 2018).
Transport and mixing processes, such as those related to mountain waves (Smith et al., 2007) and thermally
driven wind systems (Zardi & Whiteman, 2013) among others, affect CBL variability significantly.
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The role of aerosols over the south Asian region (Di Girolamo et al., 2004; Lelieveld et al., 2001) has been a
topic of high interest for the past two decades, and it is increasingly recognized as being among the hotspots
of aerosols and anthropogenic trace gases; the anthropogenic emissions are relatively high in this region and
expected to further increase for the next few decades (Dubash et al., 2018; IIASA, 2015; Krotkov et al., 2016;
Ohara et al., 2007; Rao et al., 2016). In India, several focused and thematic campaigns such as Indian
Middle Atmosphere Programme (Moorthy et al., 1999), Indian Ocean Experiment (Ramanathan et al., 2001),
Indian Space Research Organization’s Geosphere Biosphere Program (ISRO, 2004), and Integrated
Campaign for Aerosols, gases and Radiation Budget (Satheesh et al., 2008) were conducted in the past.
These campaigns addressed the physicochemical properties of aerosols and their modulation by mesoscale
and synoptic meteorological processes at different geographical regions (Moorthy et al., 2016). Another
recent campaign, Ganges Valley Aerosol Experiment, was carried out at Nainital to measure radiative, cloud,
convection, and aerosol characteristics over the mainland for a 10-month period in 2011–2012 (Dumka et al.,
2015; Kotamarthi, 2010; Singh et al., 2016). In spite of these efforts, the campaigns were time specific, and
only a sufficiently long time series of data would help in inferring climate change signals (Moorthy et al.,
2016). It is noticeable also that India is absent from the global map of GAW stations (WMO/GAW, 2016).

Notably, systematic and long-term measurements of aerosol properties in the Gangetic-Himalayan region in
India were also performed by the Indo-Finnish cooperation of the Finnish Meteorological Institute and The
Energy and Resources Institute at their sites: in the Himalayas at Mukteshwar (MUK) since 2005 (Collaud
Coen et al., 2018; Henriksson et al., 2014; Hyvärinen et al., 2009; Komppula et al., 2009; Neitola et al., 2011;
Nieminen et al., 2018; Panwar et al., 2013; Raatikainen et al., 2014; Raatikainen et al., 2017) and in the Indo
Gangetic Plains (IGP) at Gual Pahari (GP) since 2007 (Baars et al., 2016; Hyvärinen et al., 2010, Hyvärinen,
Raatikainen, Brus, et al., 2011, Hyvärinen, Raatikainen, Komppula, et al., 2011, 2013; Hooda et al., 2016;
Komppula et al., 2012). These studies infer seasonality of aerosol properties based on surface in situ and
columnar measurements, new particle formation events, topography characteristics, and disintegration
between local and regional sources. The details can be obtained from each article since a critical review is
not attempted in the present work; however, what is investigated as part of the present study has been
highlighted as follows.

In this study, 8.5 years of measured aerosol physical and optical properties at a Himalayan site are analyzed.
Remote sensing aerosol networks in India—for example, Aerosol Radiative Forcing over India Network and
AERONET (Aerosol Robotic Network—are aerosol measurement programs stared in early 2000, but to our
knowledge, this data set at MUK represents the longest surface in situ aerosol observations from India which
comprises physical and optical properties. We first provide an overview of the measurements, showing
temporal variability of aerosol properties, which corroborate with the findings of distinct diurnal and seasonal
cycles of our previous studies (refer above); however, those covered shorter time periods. We then focus on
analyzing the possible factors and causes that drive aerosol diurnal, seasonal, and interannual variability and
trends in aerosol properties at MUK. In particular, the long data set enables investigating the influence of
valley/mountain winds and atmospheric boundary layer (ABL) dynamics on aerosol variability. For this
purpose, a combination of micrometeorological observations of wind parameters, solar radiation, and water
vapor is utilized. In addition, we used a global and a regional climatemodel to investigate how the changes in
emission inventories over the study period relate to the observed long-term aerosol variability and to validate
the climate model results against measurements at MUK.

2. Methods
2.1. Measurement Site

Themeasurement station, MUK (29°26´N, 79°37´E, 2,180 m asl) in India, is located in the foothills of the central
Himalayas (Figure 1a). The site has a 180° view of the Himalayan ranges west, north, and east of the site; the
nearest high peaks are approximately 90 km NE of the site. The area surrounding the site consists of low
mountains (peaks 1,500–2,500 m asl) between the IGP (100–200 m asl) and the Himalayas (peaks
6,000–8,000 m asl; Figures 1b and S1 in the supporting information). The village of Mukteshwar, located
3 km NE of the measurement site and at a similar altitude, has ~800 inhabitants (Census of India, 2011).
The nearest population centers are the town of Almora (1,650 m asl, 16 km N, population ~34,000) and
Nainital (1,960 m asl, 25 km SW, population ~41,000) and the city of Haldwani (424 m asl, 32 km SW,
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population ~150,000). The major metropolitan city Delhi (National Capital Territory), located in the IGP region
(215 m asl, 250 km SW), has a population of ~16.8 million. Between Haldwani and Delhi, there are some
industrial zones (Figure 1b), namely, the cities Kashipur and Rudrapur (70 km SW).

The IGP region is one of the most populated with over 900 million inhabitants. It is both highly fertile
agricultural belt and a rapidly developing region of the Indian subcontinent. Furthermore, the geography
of this region adds a considerable quantity of natural aerosols (windblown desert dust; Kumar, Kumar,
et al., 2015, and reference therein) into the atmosphere from March to June, which coincides with
anthropogenic ones, making the aerosol environment one of the most complex in the region (Moorthy
et al., 2016). Crop residue burning over the IGP region is a common practice in clearing land during the
harvesting period, resulting in highly seasonal agricultural particulate emissions (Kaskaoutis, Kumar, et al.,
2014; Kumar et al., 2011; Rajput et al., 2014; Sahu et al., 2015; Singh & Kaskaoutis, 2014; Venkataraman
et al., 2006). Considering the diverse fossil fuel use for domestic, industrial, and transport energy, and the
open waste burning for disposal and heating purposes in this region (CPCB, 2010), especially over the IGP,
the postmonsoon and winter seasons have also witnessed high pollution levels (Chakraborty et al., 2015;
Hooda et al., 2016; Hyvärinen et al., 2010; Komppula et al., 2012). The elevated wintertime pollution levels
as well as severe anthropogenic winter haze (Sati & Mohan, 2014) further coincide with the fog period
(Ganguly et al., 2006; Gautam et al., 2007; Gautam & Singh, 2018), resulting in manifold increases in the com-
plexity of aerosol composition over the region. These spatiotemporally diversified emissions are coupled with
varying atmospheric dynamics, such as contrasting monsoons and varying ABL. All of this, together with the

Figure 1. (a) Site location in India. (b) The location of Mukteshwar (denoted with star) and population centers (blue filled
circles) on a 400 × 400 km topographic map (United States Geological Survey, 2016).
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complex topography, makes the Gangetic-Himalayan region’s aerosol very difficult to fingerprint and model,
and ultimately to implement effective mitigation strategies.

2.2. Aerosol Instrumentation and Data Processing

This study presents the aerosol time series from September 2005 to January 2014. The particle size
distribution was measured using a differential mobility particle sizer (DMPS, Finnish Meteorological
Institute assembled). A seven-wavelength (370 to 950 nm) Aethalometer (Magee Scientific AE-31) was used
for measuring absorption coefficient (σap) and equivalent black carbon (eBC) at λ = 880 nm, and an
integrating nephelometer (Ecotech M 9003) measured the scattering coefficient (σsp) at λ = 525 nm. The
particulate mass concentrations (PM2.5 and PM10) were measured with Thermo β attenuation mass monitors.
The details of the instrumentation (supporting information Table S1) used in the present study, their
maintenance and calibration protocols, and data logging are available in Hyvärinen et al. (2009) and
Komppula et al. (2009). The ambient air sampling scheme and sample air conditioning (drying) adhered to
the recommendations of World Meteorological Organization (WMO) (WMO/GAW, 2003, 2016) and have been
detailed in our earlier publications (Hyvärinen et al., 2009; Komppula et al., 2009).

The DMPS data were divided into three characteristic particle size ranges of aerosol at MUK: 10- to 25-nm
particles (nucleation-mode Nnuc) represent the most recently formed aerosol particles, 25- to 90-nm particles
(Aitken-mode Nait) represent fresher aerosol particles no more than a few days old, and 90- to 800-nm
particles (accumulation-mode Nacc) are representative of aged aerosol particles (Komppula et al., 2009;
Seinfeld & Pandis, 2006). In general, particle number size distributions observed at MUK (Komppula et al.,
2009) were mostly unimodal (with the mode at approximately 100 nm). The sum of the particle number
concentrations in the three particle size ranges is termed Ntot. The particle mass concentration was also
calculated utilizing the submicron aerosol size spectra assuming spherical particles and a gravimetric density
of 1.77 g/cm3. The density value used is representative for remote/background aerosols and is close to the
bulk densities of ammonium sulphate and nitrate, the main constituents of accumulation-mode particles
(DeCarlo et al., 2004; Heintzenberg et al., 2011; Stock et al., 2011). The mass size ranges are termed as
Mnuc, Mait, and Macc following the same diameter limits as in the number size distributions. The Macc was
calculated further for additional submicron particle mass concentration—for example, 90–200, 200–300,
and 300–500 nm.

The truncation error inherent to the nephelometer was corrected using Mie scattering calculations following
the guidelines of Anderson and Ogren (1998) and Moosmüller and Arnott (2003). The particle size range from
10 nm to the inlet cutoff diameter (i.e., 2.5 or 10 μm) was chosen for the correction using simultaneous
(1.5 years) measured DMPS (mobility diameter) and Aerosol Particle Sizer, TSI 3321 (APS) (aerodynamic dia-
meter) data. In May 2013, the common sample inlet was changed from PM2.5 to PM10. The selection of the
overlapped size channels in DMPS and APS is following Asmi et al. (2016). The correction factors (based on
deemed inlet cutoff diameter) were estimated for the hourly data and averaged for those days and months
when measurement coverage was ≥50%—that is, 12 hr/day and 15 days/month, respectively. The correction
factors were then applied to different periods over the entire study time, in accordance with the deemed inlet
cutoff diameter installed for nephelometer measurements. The truncation error of the measured σsp varies
between 11% and 12% across the seasons, and an error of up to 5%–15% is acceptable depending on the
particle size (Anderson et al., 1996).

The aethalometer measurements are known to suffer from several artifacts (namely, multiple scattering
enhancement on the filter tape corrected by using a C factor and loading effect referred to as the shadowing
effect). The approach of Weingartner et al. (2003) for these artifact corrections was applied in the present
analysis following Hyvärinen et al. (2009), utilizing a C factor of 2.14. However, Collaud Coen et al. (2010)
and in year 2016, WMO/Global Atmosphere Watch (GAW) has evaluated new aethalometer correction
schemes and concluded that the C factor used in most studies worldwide is too low and should be at least
2.9 (Collaud Coen et al., 2010) or 3.5 (WMO/GAW, 2016). The latter value is generally likely to be adopted,
in principle, and has an uncertainty of approximately 25% (Müller, 2015; WMO/GAW, 2016). To keep our data
set consistent with the previous analysis (Hyvärinen et al., 2009), we report our results with a C factor of 2.14
(Weingartner et al., 2003). However, the results with a C factor of 3.5 show repercussions on aerosol intensive
properties (such as the single scattering albedo); thus, we have discussed these as well.
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The single scattering albedo (SSA) using measured σsp (λ = 525 nm) and σap (λ = 520 nm), and absorption
Ångström exponent (αabs) that describes the spectral dependence of light absorption by the aerosol
(Müller et al., 2011) was calculated. The αabs is the negative slope of the regression fit between the logarithm
of the absorption coefficients and the logarithm of the wavelengths (seven wavelengths between 370
and 950 nm).

The annual coverage of valid and analyzable hourly averaged data (processed/screened) of different aerosol
properties and meteorological parameters is presented in supporting information Table S1. During data
processing, the meteorological and aerosol parameters were averaged to 1-hr resolution, taking into account
only those hours when more than 50% of the time was covered by valid measurements.

To extract more information on the seasonally averaged diurnal cycles, the diurnal cycles of the aerosol
parameters were separated from the monthly background values and are denoted as eΔ and iΔ for extensive
and intensive, respectively. This was done by subtracting mean monthly minima of the diurnal values from
each monthly diurnal cycle. This procedure forces the minimum value of the eΔ to be zero for the diurnal
cycles of each month. These minimum values were systematically observed early in the morning before
sunrise. As the minimum values of aerosol intensive parameters were typically observed at different times
of the day for different months and for different parameters, iΔ was calculated by subtracting the mean
monthly 5:00 a.m. value (representing the time before the onset of the increase in particle concentration)
from each monthly cycle.

2.3. Meteorological Data and Mixing Layer

The measurements of meteorological parameters (i.e., temperature, pressure, relative humidity, wind speed,
wind direction, and global solar irradiance) were done using MILOS500+ sensors (Vaisala). Daily precipitation
data was collected from the India Meteorological Department weather station, less than 2 km NE of MUK. The
seasonal classification adopted for MUK is winter (December to February), premonsoon (March to May),
monsoon (July to August), postmonsoon (October to November), and the transition months between
monsoon and other seasons (June and September). The solar zenith and azimuth angles were also calculated
using the algorithm of Blanco-Muriel et al. (2001) for representation of sunrise and sunset time in aerosol
variability cycles.

The specific humidity can be used as a passive tracer (Kowol-Santen et al., 2001; Serafin et al., 2018; Weigel
et al., 2007) to examine the ABL dynamics. It was calculated using meteorological data as shown in
equation (1), following Bolton, (1980), and used in the present study when direct measurements of mixing
layer depth (height) at MUK are not available.

q ¼ 0:622�eð Þ
p� 0:378�eð Þð Þ ; e ¼ 6:112� exp

17:67�Tdð Þ
Tdþ 243:5ð Þ

� �
; (1)

where q is the specific humidity in kg/kg, p is the surface pressure in hectopascals, e is the vapor pressure in
hectopascals, Td = dew point in °C, and the final specific humidity units are in g/kg.

Together with q (referred to as water vapor in from here onwards), wind speed and direction and solar
radiation were also used for investigating ABL dynamics at MUK. For part of the same period, water vapor
was also measured at GP (28°260N, 77°090E, 243m asl), located in the IGP region near Delhi at 270-km distance
from MUK (Hooda et al., 2016). In wind parameters, we utilized wind direction variability (δWD) and relative
wind speed variability (δWSr). The δWD was calculated as the average of the absolute differences in wind
direction from 1 min to the next during the given hour. The δWSr was calculated similarly to δWD, but in the
end, it was divided by the average wind speed that hour in order to retrieve a proxy that was independent
of the mean wind speed. In the case of the water vapor (q), its variability was obtained by subtracting the
monthly mean diurnal minima from the monthly mean diurnal cycle and denoted as ∂q. Further, to
investigate the ABL air lifting from the plains below, we also examined ∂q at GP and utilized average diurnal
cycle of water vapor at GP for eachmonth for further analysis. The variability (denoted as ∂q) in water vapor at
MUK and GP shows some unique differences (see Figures 5f and S2d, respectively). We assumed that ∂q at the
GP site represents the typical water vapor values in the plains (IGP). Each hourly water vapor value at MUK
was then subtracted from the corresponding hourly water vapor value at GP. This difference was noted as
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ϕq. We assumed, as stated earlier, that early in the morning (5:00 a.m.), there is no mixing of air between the
plains and MUK and noted the ϕq at 5:00 a.m. as ΔMPq, the undisturbed difference of q between MUK and
the plains. The fraction of MUK air originating from the plains (Фq), a clear indicator, was then calculated
according to equation (2):

Фq ¼ 1� qGP� qMUKð Þ
ΔMPqð Þ

� �
; (2)

2.4. Back Trajectories and Modeled Mixing Layer Depth

Lagrangian models are often used to investigate source-receptor relationships based on air mass movement
from gridded meteorological data (Fleming et al., 2012). In order to investigate the origin of the air masses
measured at MUK, 5-day back trajectories were calculated using the Hybrid Single-Particle Lagrangian
Integrated Trajectory model version 4.9 (Draxler & Hess, 1998; Stein et al., 2015). The meteorological data
used was the 1° National Center for Environmental Prediction (NCEP)/Global Data Assimilation System
(GDAS) data set with 23 hybrid pressure levels (Kanamitsu, 1989). The 5-day back trajectories were calculated
for every 3 hr (the temporal resolution of the GDAS data) over the years 2005–2014. The mixing layer depth
was taken from the NCEP/GDAS and this is referred to as modeled mixing layer depth from here onwards.

2.5. Statistical Analysis

The statistical methods were used to analyze the trends of aerosol parameters at MUK and to verify the
sensitivity of the trends results. Since the aerosol variables are approximately lognormally distributed, a
nonparametric trend test and slope estimator, the seasonal Mann-Kendall (MK) test and the Sen’s slope
estimator (Collaud Coen et al., 2013), were applied to the daily data to detect potential long-term trends
and their magnitudes for each month as well as for the whole data sets. The least mean squares (LMS) fit
of the logarithm of the monthly median has been widely used for trends estimations (Collaud Coen et al.,
2007; Collaud Coen et al., 2013), and this was also applied in the present analysis. With these statistical tools,
a general picture of the aerosol long-term variability can be obtained. If a trend was detected by one of the
methods, a generalized least squares (GLS) trend with either autoregressive or block bootstrap (ARB) confi-
dence intervals (Asmi et al., 2013) was also applied to validate the trend and estimate its magnitude. The
trend analysis was also performed with the same methods on the meteorological parameters as they were
recorded, since these are usually normally distributed. The trend analysis performed on aerosol and
meteorological parameters was for the period September 2005 to January 2014 (about 8.5 years), except
for DMPS, aethalometer and nephelometer. In May 2013, the common sample inlet of these instruments
was changed from PM2.5 to PM10 leading to a break in the long-term data set of absorption and scattering
coefficients. Thus, for these parameters, the trend analysis was applied to the period of September 2005 to
May 2013 (about 7.8 years). The DMPS data could only be considered homogeneous from March 2006 to
November 2012, and therefore, the trend analysis was applied to this shorter data set of about 6.8 years.

2.6. Global and Regional Model Simulations

The global aerosol-climate model ECHAM-HAMMOZ (version ECHAM6.1.0-HAM2.2.0-MOZ0.9.0) was used
with interactive aerosols to simulate years 2004–2014 with T63 (~210 km/1.9° grid box) spatial resolution
and 31 vertical levels (Zhang et al., 2012). ECHAM-HAMMOZ accounts for both direct and indirect aerosol
effects. The model simulations were nudged (vorticity, divergence, temperature, and surface pressure)
towards ERA-Interim data (Dee et al., 2011). For anthropogenic emissions, ECLIPSE (Evaluating the Climate
and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE)) emission data (IIASA, 2015) was used. Detailed
treatment of the emissions in ECHAM-HAMMOZ, including the annual cycle imposed on the domestic sector
emissions, can be found in Pietikäinen et al. (2015). The wildfire emissions were taken from Global Fire
Emissions Database v4 (van der Werf et al., 2010) as monthly average fields. Other natural emissions were
taken as shown in Stier et al. (2005) and Zhang et al. (2012). Natural as well as aircraft emissions were used,
as in Matt et al. (2016).

The regional aerosol-climate model REMO-HAM (version REMO2009; Pietikäinen et al., 2012) with interactive
aerosols was simulated for 2007–2011 including a spin-up time, using 0.22° (~25 km grid box) resolution with
27 vertical levels covering plains and the Himalayas in India. More details about the domain can be seen in
Kumar, Kotlarski, et al. (2015). Currently, aerosols in REMO-HAM impact radiation only through clouds
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(indirect effects). The ERA-Interim data were used as lateral boundary for meteorology, and the data from
ECHAM-HAMMOZ simulations (as above) were postprocessed for REMO’s aerosol boundary forcing data.
The same ECLIPSE aerosol emissions as discussed above were used in REMO-HAM. The shorter period of
simulations in REMO-HAM versus ECHAM-HAMMOZ is due to the heavier computational burden as a result
of higher resolution.

3. Results and Discussion
3.1. Aerosol Variability

We summarize first the characteristics of the observed aerosol variability over 8.5 years of continuous
measurements. Distinct diurnal and seasonal cycles are observed for the extensive (particle number
concentration, scattering coefficient, eBC, PM2.5, and PM10) and the intensive (αabs, SSA, and geometric mean
diameter [GMD]) aerosol parameters. The seasonal and diurnal variations exhibit many similarities during
8.5 years of measurements. The drivers of these variabilities are discussed in section 3.2.
3.1.1. Seasonal-Diurnal Cycle
Both extensive and intensive aerosol parameters manifest a pronounced month-dependent diurnal cycle.
Table 1 displays a strong seasonality across the aerosol properties similar to that presented earlier
(Hyvärinen et al., 2009; Komppula et al., 2009; Raatikainen et al., 2014) for optical and physical properties
based on a data set of 2–3 years at MUK. Recently, Dumka et al. (2015) also perceived a similar seasonality
in scattering and absorption coefficients at Nainital based on 10-month observations.

In premonsoon months, the concentration of extensive aerosol properties is consistently high over the
course of the day with 1.5–2 times higher values in the early to late afternoon than during the night
(Figure 2, left column). However, Nnuc is exceptional for different reasons (discussed later). The consistently
higher values of aerosol, as seen in the left panel of Figure 2, exhibit attribution of high
background/residual aerosol concentration in premonsoon, which may be misinterpreted as a weakened
diurnal pattern. Notably in normalized analysis (eΔ and iΔ values; Figure 2, right column), the influence of
long-range transported aerosols in the late afternoon dominates distinctly during premonsoon, when air
masses from the plains reach MUK (see section 3.2). This is evidenced by relatively large amplitudes in Ntot,
PM2.5, eBC, and σsp values in corresponding time (Figure 2, right column). In the case of Nnuc (Figure 2c)

Table 1
Seasonal/Annual Values (Mean ± SD) of Aerosol Extensive and Intensive Parameters at MUK

Aerosol property Winter (DJF) Premonsoon (MAM) Monsoon (Jul–Aug) Postmonsoon (ON) Transition (Jun and Sep) Annual

Extensive
PM2.5 (μg/m

3) 20 ± 10 40 ± 20 12 ± 10 22 ± 15 25 ± 15 25 ± 15
PM10 (μg/m

3) 25 ± 20 70 ± 40 20 ± 25 35 ± 25 40 ± 30 40 ± 30
eBC (μg/m3) 0.85 ± 0.65 1.40 ± 0.85 0.35 ± 0.25 0.90 ± 0.60 0.70 ± 0.40 0.90 ± 0.60
aσap (Mm�1) 2.14 12 ± 9 20 ± 10 5 ± 3 12 ± 8 10 ± 6 12 ± 8
aσap (Mm�1) 3.5 7 ± 6 12 ± 7 3 ± 2 7 ± 5 6 ± 3 7 ± 5
σsp (Mm-1) 70 ± 60 110 ± 65 35 ± 30 75 ± 60 65 ± 40 75 ± 55
Ntot (cm

�3) 2,700 ± 1,700 5,200 ± 2,850 1,650 ± 750 2,200 ± 1,100 2,600 ± 1,250 3,050 ± 1,650
Nnuc (cm

�3) 90 ± 120 380 ± 600 40 ± 45 65 ± 85 80 ± 125 150 ± 200
Nait (cm

�3) 1,200 ± 820 2,290 ± 1520 840 ± 360 880 ± 550 1,240 ± 670 1,360 ± 850
Nacc (cm

�3) 1,420 ± 950 2,550 ± 1450 770 ± 420 1,200 ± 600 1,320 ± 680 1,540 ± 880
Intensive
αabs 1.40 ± 0.5 1.25 ± 0.2 1.15 ± 0.3 1.20 ± 0.3 1.10 ± 0.3 1.25 ± 0.4
bSSA2.14 0.82 ± 0.06 0.84 ± 0.03 0.83 ± 0.07 0.83 ± 0.04 0.84 ± 0.06 0.83 ± 0.05
bSSA3.5 0.88 ± 0.05 0.90 ± 0.02 0.89 ± 0.06 0.89 ± 0.03 0.90 ± 0.05 0.89 ± 0.04
PM2.5/PM10 0.97 ± 0.63 0.68 ± 0.31 0.88 ± 0.73 0.94 ± 0.58 0.79 ± 0.55 0.85 ± 0.55
eBC/PM2.5 0.06 ± 0.07 0.04 ± 0.03 0.07 ± 0.06 0.05 ± 0.07 0.04 ± 0.04 0.05 ± 0.05
Nacc/Ntot 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
Nait/Nacc 1.3 ± 0.6 1.4 ± 0.8 1.8 ± 1.0 1.1 ± 0.6 1.4 ± 0.8 1.05 ± 0.6

Note. The 2.14 value of C (Weingartner et al., 2003) and 3.5 value of C (WMO/GAW, 2016) used in Weingartner correction (Weingartner et al., 2003) approach for the
aethalometer. DJF = December to February; MAM = March to May; ON = October to November; SSA = single scattering albedo; eBC = equivalent black carbon.
aFor hourly data, the value of σap is decreased by 40% on average (range 25% to 45%). bSingle scattering albedo (SSA) is increased by 7% (range 3% to 10%)
while using C = 3.5 instead of using C = 2.14 (see section 2.2 on C factor correction).
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and eΔNnuc (Figure 2d), this shows a different behavior, being elevated only during afternoon in premonsoon,
indicating new particle formation (NPF) events (Neitola et al., 2011).

In monsoon, the extensive parameter concentrations are low and constant; thus, no pronounced diurnal
pattern is identified (Figure 2). Previous work (Hyvärinen, Raatikainen, Komppula, et al., 2011) has shown a

Figure 2. The diurnal-monthly aerosol extensive parameters representation in terms of both seasonal and diurnal variation
(left column) and diurnal variation alone (eΔ; the minima of the diurnal values subtracted for each month [right column]).
The sunrise and sunset time is shown with the white lines. eBC = equivalent black carbon.

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,428



decrease of 40%–75% in average concentrations of aerosol physical and optical properties during monsoon
relative to the premonsoon average concentration. In postmonsoon, particle mass and number
concentrations elevate again to about twofold compared to monsoon, but lower than premonsoon values.
In winter, a narrow decrease in aerosol concentrations relative to postmonsoon is noticed before a peak
during premonsoon (Figure 2).

Figure 3 shows the seasonal cycle of the intensive parameters (αabs, SSA, and GMD). The αabs relative to iΔαabs
is observed with small diurnal changes across the seasons. A high αabs (Figures 3a and 3b) concurrently with
low SSA (Figures 3c and 3d) shows the less scattering nature of the particles in winter. Moreover, some
individual (hourly average) values of SSA registered as low as <0.6 in December and January, suggesting
attribution of weak local or regional sources for absorbing aerosol emissions (Hyvärinen et al., 2009). In
general, αabs in fresh biomass burning smoke can vary from 1 to 10 (depending on the combustion process;
Pokhrel et al., 2016). Thus, it is difficult to infer a plausible source only based on αabs. But a ratio of Nait/Nacc

(supporting information Figure S8a) 1.0–1.5 times higher during the day time than the night time, together
with PM2.5/PM10 ratio between 0.8 and 0.95, can be attributed to biomass emissions, such as burning dung
cakes for heating and cooking purposes in the region (Komppula et al., 2009).

The values of SSA are relatively close to each other across the seasons (0.82 to 0.84; Table 1), indicating equal
changes in source strength or removal processes of absorbing and scattering types of aerosols. The values of
SSA are also low, up to 0.7 in August. However, contrary to winter, in August the dispersed and low SSA values
in addition to the elevated Nait/Nacc ratio (Table 1 and supporting information Figure S8a) imply wet
scavenging of aged particles (Laakso et al., 2003). Moreover, we observe a clear difference in SSA during
the November and March eBC peaks. In March, the mean SSA decreases from 0.85 to 0.81 as the BC-rich
aerosol reaches MUK (Figure 3c). However, in November a small increase is seen in SSA in the afternoon
hours (Figure 3c).

Figure 3. The diurnal–monthly aerosol intensive parameters representation at Mukteshwar in terms of both seasonal and
diurnal variation (left column) and diurnal variation alone (iΔ; the 5 a.m. diurnal values subtracted for each month [right
column]). The sunrise and sunset time is shown with the white lines. SSA = single scattering albedo; GMD = geometric
mean diameter.
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The GMD values for MUK are little bit higher than those observed elsewhere: for example, in Siberia, over
2006–2009 measurements (Heintzenberg et al., 2011), a site relatively undisturbed by anthropogenic
influences, and in central North Carolina, in a forested suburban environment during September (Ziemba
et al., 2010). The nighttime values of GMD at MUK are higher than the daytime values across the months.
The GMD (Figure 3e) is stable at approximately 92 nm under more stagnant conditions in the winter
(Herrmann et al., 2015) and distinctly high in monsoon (Figure 3f), obviously due to wet scavenging of large
particles. A high ratio of eBC/PM2.5 and Nait/Nacc (Table 1 and supporting information Figure S8a) in monsoon
relative to other seasons also manifests wet scavenging of large (aged) particles (Hyvärinen, Raatikainen,
Komppula, et al., 2011). But a decrease in ratio of Nait/Nacc concurrently with an increase in ratio of Nacc/Ntot

(Table 1 and supporting information Figure S8b) and maxima in GMD (Figure 3e) with a distinct amplitude in

iΔGMD (Figure 3f) during postmonsoon might imply long-range transported plumes of stubble burning. The
GMD is lowest at approximately 80 nm in premonsoon (specifically in April) due to NPF (supporting
information Figure S10; Dal Maso et al., 2005; Komppula et al., 2009; Neitola et al., 2011). The iΔGMD also
shows distinctly very low values in early to late afternoon, especially in premonsoon.
3.1.2. Interannual Variability and Trend Analysis
The interannual variability in aerosol is distinct, and to get more insight into this variability, the relative
deviations of monthly averaged values from the typical seasonal cycle were obtained with division of each
monthly mean by respective monthly mean over the entire period 2005–2014.

Themonthly anomalies in the interannual cycle are presented as an example for PM2.5 and Ntot (Figure 4). The
high values of PM2.5 are in 2009 and Ntot is in both 2009 and 2012. The observed April–July monthly values of
PM2.5 in 2009 are as high as 80 μg/m3, and Ntot is elevated to 6,000 #cm�3. Again in December 2011–2012
and January–March 2012, the aerosol particle number concentration increases up to 7,500 #cm�3, but
PM2.5 remains close to or even below the seasonal mean values. In the present analysis, on average the
interannual variability of both PM2.5 and Ntot is ±20%.

The trend analysis at MUK shows statistically significant negative trends at 95% confidence level with slopes
of �19 μg/m3 and of �23 μg/m3 in PM2.5 and PM10, respectively, with both LMS and GLS/ARB methods. But
MK analysis results in a statistically insignificant trend for both PM2.5 and PM10. The trend analysis result of
Ntot has a positive slope, but not statistically significant (not shown here). In summary, all other aerosol
parameters observed at MUK show no statistically significant trend, either with MK or LMS analysis. The ratio
of eBC to PM2.5 has a positive statistically significant trend of 2.44%/year corresponding to a slope of 0.06
(μg/m3(BC/PM2.5)/7.7 years). However, eBC itself does not exhibit a statistically significant trend, so the
observed trend in eBC/PM2.5 is assumed to have been caused by the negative trend in PM2.5.

In general, the absence of a statistically significant trend for the other aerosol parameters can be largely
attributed to the length of the time period of continuous measurements in this study. As commented in

Figure 4. Monthly anomaly (dividing each monthly mean value by the 2005–2014 mean value for the given month) of
aerosol variables. The parameters PM2.5 and Ntot are unit less.
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Collaud Coen et al. (2013), trends calculated on time series shorter than 8–10 years usually present larger
slopes with great confidence intervals leading to statistically insignificant trends, since the results are too
much influenced by the initial and final period together with possible outliers. Interestingly, in contrast to
an increase in emission loads in India (Dubash et al., 2018; Krotkov et al., 2016; Rao et al., 2016), a decreasing
trend of PM is investigated at MUK, as discussed above, which corresponds to a decrease in the interannual
tendency of ABL (using modeled mixing layer depth) air transport to MUK from IGP (supporting information
Figure S4). However, in-depth assessment of its reasons and linkages with aerosol variability could be a
future task.

On trend analysis in India, CPCB (2012) showed varying trends for PM10 across 46 cities (population 1 million
plus) based on their long-term (2000–2012) monitoring, while HEI (2017) indicated an increase in air pollution
(PM2.5) levels since 2010. Both these results have their own limitations in terms of a robust trend analysis
approach and representation of monitoring locations for all of India.

3.2. Factors Driving the Aerosol Variability
3.2.1. Diurnal Cycle
The seasonal-diurnal plots in Figure 2 show a clear increase in all extensive aerosol parameters during late
afternoon outside of the monsoon season. Raatikainen et al. (2014) identified similar patterns in aerosol
patterns at MUK and used a modeled mixing depth in the plains to infer the transport of polluted air from
IGP to MUK. It has previously been shown that convective mixing can transport polluted air from valleys
and plains to high-altitude mountain sites (Baltensperger et al., 1997; Poltera et al., 2017; Raatikainen et al.,
2014). It is known, however, that modeled mixing layer depths have uncertainties (supporting information
Figure S3), especially in the mountain environment (Lehner & Rotach, 2018; Rotach et al., 2015); thus, here,
due to the absence of direct measurements (Eresmaa et al., 2006) of the mixing layer depth, we use observed
surface meteorological variables to determine the likely influence of boundary layer transport.

Figure 5 presents the monthly and diurnal median values in selected meteorological parameters at MUK:
wind direction, wind speed, specific humidity, and solar irradiance. Outside of the monsoon season, the
median wind direction (Figure 5a) has a very strong diurnal cycle, being predominantly NE-E (with 45% total
contribution) during the day and N-NW (with 37% total contribution) at night. These wind directions are
consistent with the alignment of the mountain ridges (Gohm et al., 2009; Pal et al., 2014; supporting
information Figure S1). Figure 5 also presents the variability in winds and specific humidity, with a high
variability indicating turbulence and hence an actively mixing boundary layer. The variability in wind speed
and direction (Figures 5b and 5d) as well as specific humidity (Figure 5f) is much higher during the day, a
consequence of the daytime convectively driven turbulent boundary layer (Stull, 1988). Strongly turbulent
periods are associated with a reduction in horizontal wind speeds (Figure 5c). The strength of the turbulent
mixing, indicated by the variability in each parameter, is determined by the sensible heat fluxes arising from
solar irradiance (Figure 5g); good agreement between high solar irradiance and high variability in winds and
specific humidity is the result of high solar irradiance generating high surface sensible heat fluxes and
associated turbulent boundary layer. Note that the timing of maximum solar irradiance is, as expected,
around solar noon on clear days whereas the maximum variability in winds and specific humidity is generally
later in the afternoon (Prabha et al., 2012). The wind speed displays more variability than wind direction
earlier in the day; however, and it is known that the boundary layer in mountainous regions has a more
complex structure due to the interaction between flows at different scales (synoptic flow, valley wind, and
slope flows; De Wekker & Kossmann, 2015; Ball, 1960; Tennekes, 1973; Serafin et al., 2018; Stull, 1973,
1988). At night, the variability is much lower since, in the absence of any thermal convection, any turbulent
production is the result of wind shear (Serafin et al., 2018).

During the monsoon season, the diurnal pattern is heavily suppressed. In the night time the wind direction is
SE (Figure 5a) since the summer monsoon circulation in India is more synoptic in scale (Kaskaoutis, Houssos,
et al., 2014), and there is also more night time variability in wind speed and direction compared to other
seasons. The solar irradiance at the surface is much reduced, producing weaker, surface-driven convective
mixing; hence, the daytime variability in the winds and in specific humidity is not as strong as in the
premonsoon and postmonsoon seasons. An additional source of turbulent mixing during the monsoon
period is cloud-driven turbulence (Mehta et al., 2017).
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However, the relative strength of boundary layer mixing alone is not sufficient to infer the mixing layer depth
and thereby determine whether aerosol measurements at MUK are influenced by transport from the plains
(IGP). The parameter Фq shown in Figure 6a is a much clearer indicator, as this uses the property that specific
humidity is a conserved variable and is usually locally well mixed. Elevated values ofФq correspond very well
with the observed 1.5–2 times increase in all extensive aerosol parameters at MUK seen in the early to late
afternoon in Figure 2.

A weak peak in the morning is attributed to transport of air from the local valley, while the boundary layer is
still growing, and the strong peak in the late afternoon relates to daytime transport of moist air masses from
lower altitudes, mixed with the valley air (Figure 6a). Furthermore, themixing layer influence is evaluated with
different threshold values of Фq (0.25, 0.5, and 0.75) and compared to the maximum mixing depth (model
based) in terms of the fraction of the days when MUK is under the influence of air from the plains

Figure 5. The diurnal-monthly median cycle of meteorological parameters at MUK: (a) wind direction, (b) wind direction
variability (average of the absolute differences in wind direction from 1 min to the next during the given hour and
represented as δWD), (c) wind speed, (d) wind speed variability (same way as δWD, but in the end divided by the average
wind speed of that hour and represented as δWSr), (e) diurnal-monthly median of specific humidity, (f) diurnal median
alone (subtracting the minima of eachmonthly cycle from all values of the respective cycle and represented as ∂q), (g) solar
irradiation. The sunrise and sunset time is shown with the white lines.
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(Figure 6b), indicating the mixing of air masses dominantly in premonsoon and postmonsoon. This is in
agreement with previous findings that high regional pollution can be seen in dry months at elevated sites
when the boundary layer is deep enough (Collaud Coen et al., 2013).
3.2.2. Seasonal and Interannual Variability
Broadly, the differentiation of seasons (premonsoon and postmonsoon) in India is based on the arrival and
withdrawal phases of the classified precipitation level, and that might differ across the years. One of the
suggested reasons is El Niño, which delays the onset of monsoon rains by inducing enhanced subsidence,
persistent during the preonset phase, and advances the withdrawal by intensifying the horizontal cold air
advection (Krishna Kumar et al., 2006; Xavier et al., 2007). The months of June and September, a mix of dry
and rainy periods with transitional synoptic weather conditions and synoptic scale circulation, impeded a
weaker diurnal aerosol cycle (Figure 2).

Figure 4 shows exceptionally high aerosol concentration in 2009 and 2012. A delay in onset of monsoon in
2009 might be due to El Niño event (Table 2), resulting relatively high aerosol concentration. Previously,
Hyvärinen, Raatikainen, Brus, et al. (2011) and Hyvärinen, Raatikainen, Komppula, et al. (2011) examined
the influence of monsoon on PM and BC concentrations along with optical and physical properties at MUK
and identified less of a decrease in aerosol concentration during 2009 than 2006 and 2007. The air mass
trajectories in anomaly month during 2009 (supporting information Figure S7) are typical of a dry and wet
period and show a seasonal corroboration to that in other years. Although, 2012 has a negative rainfall
anomaly, it is below the line for drought (IITM, 2017), suggesting the anomaly was not driven primarily due

Figure 6. (a) Diurnal influence of atmospheric boundary layer (each hourly q value at Mukteshwar subtracted from the
respective hourly q at Gual Pahari (in Indo Gangetic Plains) and divided by values at 5 a.m., represented as Фq), (b) mix-
ing layer influence as the average monthly fraction of days affected by air from Indo Gangetic Plains illustrated with
maximum mixing depth and Фq with three threshold values (0.25, 0.5, and 0.75) shown as blue thick line in middle (0.5),
and as upper (0.25), and lower (0.75). The sunrise and sunset time in (a) is shown with the white lines.

Table 2
Year-Wise Details of ENSO Phase, Onset, and Withdrawal of Monsoon, and Cumulative Rainfall at MUK

Year
ENSOa

phase
SW monsoon

onsetb
SW monsoon
withdrawalb

Cumulative rainfall (mm) in parenthesis (%)c
Annual cumulative

rainfall (mm)dJJAS JA

2005 — 16 June 28 Sept 990 (74) 580 (43) 1,330
2006 El Niño 30 June 27 Sept 680 (75) 455 (50) 910
2007 La Niña 18 June 02 Oct 785 (60) 450 (34) 1,320
2008 — 16 June 28 Sept 1,380 (91) 775 (51) 1,510
2009 El Niño 29 June 28 Sept 900 (68) 540 (41) 1,315
2010 La Niña 05 July 28 Sept 1,490 (88) 830 (49) 1,700
2011 La Niña 20 June 26 Sept 1,220 (82) 850 (57) 1,490
2012 — 05 July 25 Sept 920 (82) 660 (60) 1,115
2013 — 15 June 15 Oct 1,190 (74) 500 (31) 1,610
2014 El Niño 01 July 04 Oct 1,000 (64) 870 (55) 1,575

Note. ENSO = El Niño–Southern Oscillation; MUK = Mukteshwar.
aAll India Summer Monsoon Rainfall: http://www.tropmet.res.in/~kolli/mol/Monsoon/frameindex.html. bIndia Meteorological Department, monsoon report.
cBased on daily rainfall data (IMD, 2016; surface chemistry station at Mukteshwar); dashes refers to not classified; JJAS = June, July, August, and September (south-
west SW monsoon period); JA = July and August. dSum of JJAS (SW); and northeast (NE) monsoon (November–March); monsoon transition periods (April and
May for the winter-to-summer transition, and in late September to October for the summer-to-winter transition).
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to less rain. The air mass trajectories, however, are NW centered (supporting information Figure S7) and are
short, with an average height above 4,000 m (range 2,500–7,500 m, not shown here; Komppula et al., 2009)
along the Himalayan ridges. Therefore, for such altitudes where the aerosol layers are commonly associated
with increases in sulfur dioxide (SO2) and CCN (cloud condensation nuclei; Clarke et al., 2013), notably when
SO2 levels had been documented with increased emissions over the region (Li et al., 2017; Lu et al., 2013), this
is likely to establish a linkage of the transport of such layers to MUK. However, this remains a future task for
in-depth analysis. The ECHAM-HAM simulations also show an increasing pattern in Ntot (Figure 8).
Notwithstanding, a plausible explanation of high Ntot and relatively low PM2.5 values in 2012 could not be
interpreted satisfactorily through the present analysis, even though PM10 values are also noticed to be
relatively high in March 2012 (not shown here).

In contrast to 2009 and 2012, year 2010 and 2011 have La Niña events (Table 2), hence the highest annual
cumulative precipitation, suggesting the lowest aerosol concentration. In monsoon, GMD shows a dip
(Figure 3) that corroborates well with earlier findings of an efficient cleansing process of particles at MUK
and GP (Hyvärinen, Raatikainen, Brus, et al., 2011, Hyvärinen, Raatikainen, Komppula, et al., 2011). This is
attributed to nonuniform removal of particles due to cloud processes and wet scavenging by rain, which
are more efficient for larger particles scavenging.

Outside the monsoon, the IGP suffers from intense dust storms originated from the arid and desert regions of
southwest Asia (Iran, Afghanistan), Arabia, and the Thar desert blanketing IGP and the Himalayan foothills
(Carrico et al., 2003; Duchi et al., 2014; El-Askary et al., 2006; Kaspari et al., 2009). Figure 7 shows normalized
frequency of air mass origin before arriving at MUK and traveling over large regional population centers in

Figure 7. Normalized frequency of the trajectories, (a) dry period (October to May) and (b) monsoon (July and August).
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the IGP region (Komppula et al., 2009) carrying a considerable amount of windblown dust and agricultural
burning aerosols (Dumka et al., 2015; Kumar, Kotlarski, et al., 2015). In the dry seasons (premonsoon and
postmonsoon and winter), the trajectories show air masses arriving at MUK from the northwest and
southwest sectors, but in general dominated by westerly air masses (Figure 7a). In the monsoon, the air
masses originate from the Arabian Sea and Bay of Bengal and arrive at MUK by moving parallel to the
Himalayas (Figure 7b). The air masses ascend such that the average altitude of the trajectory is lower than
the end point altitude (not shown here). The humid marine air masses travel above IGP before reaching
MUK. As the wet air mass rises to the altitude of MUK, the moisture condenses and rains down, effectively
removing a lot of the particles (Figure 7b). The prevailing meteorological conditions and the marine humidity
are the factors that differentiate the air masses, along with the fact that during premonsoon; there is a large
amount of dust at middle and upper levels of the troposphere that is also transported over MUK.

Anthropogenic emissions, both local and distant are found to lead to significant climate impacts over India
(Guo et al., 2016). The emissions of SO2 (IIASA, 2011; Li et al., 2017), NOx (Li et al., 2017), and PM2.5

(Guttikunda & Jawahar, 2014; HEI, 2017; Rao et al., 2016) are increasing trends in India. The SO2 and NOx emis-
sions are mainly released from the energy sector, road transport, and industries (IIASA, 2015). In the case of
PM2.5, the combustion of biomass for cooking (HEI, 2017) and emissions from coal-fired power plants
(Guttikunda & Jawahar, 2014) are predominant. The emissions of BC and OM (organic matter) from the
domestic sector in India show a slight decreasing or stable trend post-2010, and sulphates mainly from
energy production and industries show a steep increasing trend after 2007 (IIASA, 2015).

The absolute emission strength at MUK is small in comparison to emissions over the Delhi region (supporting
information Figure S6). The MUK area is often under the influence of long-range transported air masses from
the IGP region, as discussed in the previous section, which results in long-range transported biomass burning
aerosols (Dumka et al., 2015; Komppula et al., 2009; Kumar et al., 2011) and aged combustion-derived
aerosols (Komppula et al., 2009; Raatikainen et al., 2017). The size-segregated correlation analysis reveals
eBC mass contribution significantly in the size range> 90 nm (supporting information Figure S9) and to that
in 200–300 nm of the submicron aerosol mass spectra, suggesting attribution of aged combustion aerosol at
MUK. The results are in corroboration with those observed in Hanle (Gogoi et al., 2014), a site in the western
Himalayas at a higher altitude than MUK and potentially a receiver of aerosol aged further than that at MUK.
Previously, Raatikainen et al. (2017) observed a similar eBC size distribution at MUK which is dominated by a
mode at 210 nm during premonsoon season. The 5-day back air mass trajectories (Figure 7) also indicate
long-range transported aerosol plumes at MUK. However, local anthropogenic emissions, although on a weak
scale (domestic cooking and space heating), are also important. The local traffic emissions did not lead to a
large aerosol load at MUK as we found no statistically robust cycle in weekday-weekend variability of
extensive aerosol parameters. The values are within 1σ (standard deviation) across the months, confirming
MUK to be located away from any high traffic density roads or cities. But the remote traffic emissions from
the plains cannot be ruled out.

Besides mineral dust, another major source of MUK aerosol load is crop residue burning. The increased PM2.5

and eBC concentrations in the afternoon hours during February–March and October–November (Figures 2e
and 2g) agree with the seasonality of crop-residue burning at IGP (Kumar et al., 2011; Venkataraman et al.,
2006). Domestic heating and cooking, which are also major sources of biomass burning aerosol in India
(Bond et al., 2013), could have a similar signature to crop-residue burning with simultaneously increasing
PM2.5 and eBC. However, as the observed peaks in PM2.5 and eBC (Figures 2f and 2h) occur during the har-
vesting months but not during the coldest months (December and January), we attribute these peaks to
open crop-residue burning’s impact on the air masses being transported from the plains to MUK. Dumka
et al. (2015) observed a similar seasonality in scattering and absorption coefficients at Nainital, which was also
attributed to long-range transported biomass burning aerosols. In northern India, rice residue burning is the
main source of biomass burning aerosols in November, while in March, wheat residue burning prevails.

We observe a clear difference in SSA during the March and November eBC peaks. In March, the mean SSA
decreases from 0.85 to 0.81 as the BC-rich aerosol reaches MUK (Figure 3c). However, in November a small
increase is seen in SSA in the afternoon hours (Figure 3c). This is surprising, considering that in March, toward
the end of the dry period, the amount of wind-blown dust is increasing and thus one would expect more scat-
tering aerosol and higher SSA than in November.
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A higher BC fraction in PM emissions from wheat residue burning compared to rice residue burning could
explain the lower SSA in March. However, near-fire measurements (Ni et al., 2015; Zhang et al., 2015) do
not indicate conclusive differences between the crops but report highly variable BC and PM2.5 emissions.
Another factor that may contribute to higher SSA in November is SOA formation. In November, biogenic
emissions of SOA precursors are probably higher than in March. Additionally, SOA formation in crop residue
burning plumes (Vakkari et al., 2018; Yokelson et al., 2009) may make a larger contribution in November than
in March. Rice is cultivated mostly >200 km from MUK (Kaskaoutis, Kumar, et al., 2014), but wheat is grown
also within 50–200 km of MUK; the longer transport would allow more time for in-plume SOA formation.
However, this cannot be verified without further studies closer to the sources.
3.2.3. Modeled Aerosol Variability
In addition to observations, simulations are undertaken using two climate models with the same
anthropogenic emissions but different spatial resolutions (ECHAM-HAMMOZ with a ~1.9° resolution and
the regional model REMO-HAM with a 0.22° resolution). These simulations are used to evaluate the models’
ability to capture the observed aerosols variability (refer to section 3.1) at MUK. In both models, the model
level closest to the station altitude is chosen for the comparison following Pietikäinen et al. (2012). It should
be mentioned that comparing a mountain station against models with terrain following hybrid pressure
based coordinates is problematic unless the model spatial resolution is very high (approximately some
kilometers). In this coordinate system, the horizontal transport of aerosols is too efficient in the lowest model
layers—even at times when in reality there is no transport in the layer below the MUK station. This causes
overestimation in the lowest model levels of mountainous areas and is the reason why we use the
height-matched level (Li et al., 2014; Zou et al., 2016, and references therein). However, the height-matched
level also has some errors as the terrain following vertical coordinate levels combined with the hydrostatic
model does not produce enough vertical transport at mountainous regions. This causes some artificial
dilution of the concentrations, but the error is much smaller than with the lowest level approach.

Figure 8 shows the monthly mean and 6-month moving mean of Ntot at MUK over the period 2005–2014 in
the ECHAM-HAM simulations and the observations. The anomalies are compared for the different months of
the years 2005–2014. The modeling results are comparable to the corresponding observational result of
anomalies of Ntot (Figure 4). However, since the station stays within the ABL in the model and the artificial
dilution does not allow the pollution load to build up sufficiently over the plain, the height-matched model
level of MUK does not receive a strong enough pollution pulsewhen the ABL starts to grow and encompasses
MUK in the premonsoon months. We do see that the later years of the period from 2005–2014 in general
have higher Ntot concentrations with both observational and modeling results. Additionally, many of the
interannual and interseasonal variability features—for example, the peaks in early 2009 and 2012 and the
low values in late 2010 and late 2011—are captured reasonably well.

On the other hand, ECHAM-HAM overestimates the measured eBC values almost throughout the analyzed
period and shows a reversed seasonality with the lowest concentrations during the premonsoon. A
comparison of the modeled and measured eBC concentrations at MUK with the ECHAM-HAM and

Figure 8. Monthly anomaly of Ntot in ECHAM-HAM simulations and in situ measurements at Mukteshwar.
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REMO-HAMmodels, using the same emission inventory, is shown in Figure 9. The modeled overestimation is
likely due to the coarse resolution of ECHAM-HAM, which flattens the orography and seems to artificially
delay modeled precipitation so that it takes place at higher altitudes than MUK (analysis not shown). But
the variability observed in measurements is captured reasonably well with the higher-resolution regional
model REMO-HAM (Figure 9), apart from underestimating the measured peak concentrations during
premonsoon and very slightly overestimating eBC during monsoon.

Notably, both models are able to capture the observed eBC concentrations over the IGP much more reliably
(a comparison to GP is shown in supporting information Figure S11), indicating that the emission inventory
does not have significant biases. This finding further indicates that transport and representation of the valley
wind influence to ABL might be the main reason for the poor performance of ECHAM-HAM in modeling eBC
at the mountainous MUK. Further issues include uncertainties in subgrid processes (like orographic thermal
circulation) manifested in typical diurnal variation patterns, errors in model-predicted meteorology, aerosol
processes, numerical model errors, and uncertainty in boundary conditions (Kumar, Barth, et al., 2015;
Seibert et al., 2000). Moreover, inaccuracies in the local emissions estimations (Saikawa et al., 2017) are
also possible.

4. Summary and Conclusions

We present the longest time series for in situ aerosol observations at a mountain site in India. The annual and
seasonal values of aerosol extensive properties at MUK show high aerosol concentrations with respect to
mountain sites worldwide, but still low in comparison to rural and urban sites elsewhere in India.

Typically, the strongest variability takes place over several consecutive months, indicating a seasonal
phenomenon. The interannual variability of PM2.5 and Ntot is ±20%, and we attribute the variability mostly
to meteorology and climate changeability, and longer-term variations in emissions. Trend analysis shows
statistically significant decreasing trends of �2.3 μg m�3 year�1 and �2.7 μg m�3 year�1 for PM2.5 and
PM10, respectively. A decreasing interannual tendency for ABL air from IGP reaching MUK suggests a
decrease in transport of pollution-laden air from the plains. However, investigating further this decreasing
interannual tendency will be within the scope of future work.

All extensive aerosol parameters have 1.5–2 times higher values in early to late afternoon than in the night.
Aerosol number concentration has a clear peak in the late afternoon and a minimum at 5:00 in the morning.

Figure 9. Daily median measured and modeled black carbon (BC) ground concentrations at Mukteshwar. The modeled values are from the height-matched levels.
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The seasonal variability is modulated due to fluctuations in different anthropogenic and natural sources, air
mass flows, and/or wet scavenging. The long-range transported plumes of dust are pronounced in
premonsoon, while stubble burning contributes in both premonsoon and postmonsoon. In premonsoon,
notably the atmospheric NPF contributes in elevating total number concentration. The wet scavenging
process in monsoon has significant influence on both extensive and intensive parameters of aerosols.

In this study, we used observed surface meteorological variables in the absence of direct measurements of
the mixing layer depth to determine the likely influence of boundary layer transport to MUK. The results
present the variability in winds and specific humidity, with a high variability indicating turbulence and hence
an actively mixing boundary layer; however, during the monsoon season, the diurnal pattern is
heavily suppressed.

But the relative strength of boundary layer mixing alone is not sufficient to infer the mixing layer depth and
hence determine whether aerosol measurements at MUK are influenced by transport from the plains (IGP).
Thus, in determining that variable, we use each hourly specific humidity both at MUK and GP (IGP), and
referred as (Фq): the fraction of MUK air originating from the plains. The parameter Фq is a much clearer
indicator, as this uses the property that specific humidity is a conserved variable and is usually locally well
mixed. Elevated values of Фq correspond very well with the observed 1.5–2 times increase in all extensive
aerosol parameters at MUK seen in the early to late afternoon. It concludes that the water vapor proxy
matches reasonably well with aerosol variability over the course of the day and across the seasons.
Further, it suggests that a weak peak in aerosol concentration in the morning could be due to air from the
local valley, and the strong peak in the late afternoon may be dominantly related to daytime transport of
moist air masses from lower altitude, mixed with the valley air. In summary, it suggests that the mixing of
air masses via vertical and horizontal transport is significant in premonsoon and postmonsoon. The monsoon
season is not captured well either with water vapor proxy or modeled mixing layer depth.

The global model ECHAM-HAM simulation with nudged meteorology reproduces the interannual,
interseasonal, and long-term variability of Ntot reasonably well. The global model is struggling with modeling
eBC concentrations in the mountainous region at MUK, while the regional model REMO-HAM managed to
reproduce some of the main features of the variability. Both models reproduce the concentrations well over
the IGP region (e.g., GP), indicating that emissions are not highly biased in the twomodels. This highlights the
need of sufficient resolution and correct descriptions of transport processes when investigatingmountainous
regions. Efforts to increase resolution and improve process descriptions ought to improve the match
between observational and modeling results further in future work.

References
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., et al. (1996). Performance characteristics of a high-

sensitivity, three-wavelength, total scatter/backscatter nephelometer. Journal of Atmospheric and Oceanic Technology, 13(5), 967–986.
https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2

Anderson, T. L., & Ogren, J. A. (1998). Determining aerosol radiative properties using the TSI 3563 integrating Nephelometer. Aerosol Science
and Technology, 29(1), 57–69. https://doi.org/10.1080/02786829808965551

Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., et al. (2013). Aerosol decadal trends—Part 2: In situ aerosol
particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 13(2), 895–916. https://doi.org/10.5194/
acp-13-895-2013

Asmi, E., Kondratyev, V., Brus, D., Laurila, T., Lihavainen, H., Backman, J., et al. (2016). Aerosol size distribution seasonal characteristics mea-
sured in Tiksi, Russian Arctic. Atmospheric Chemistry and Physics, 16(3), 1271–1287. https://doi.org/10.5194/acp-16-1271-2016

Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., et al. (2016). An overview of the first decade of PollyNET: An
emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmospheric Chemistry and Physics, 16(8),
5111–5137. https://doi.org/10.5194/acp-16-5111-2016

Ball, F. K. (1960). Control of inversion height by surface heating. Quarterly Journal of the Royal Meteorological Society, 86, 983–994.
Baltensperger, U., Gäggeler, H. W., Jost, D. T., Lugauer, M., Schwikowski, M., Weingartner, E., & Seibert, P. (1997). Aerosol climatology at the

high-alpine site Jungfraujoch, Switzerland. Journal of Geophysical Research, 102(D16), 19,707–19,715. https://doi.org/10.1029/97JD00928
Blanco-Muriel, M., Alarcón-Padilla, D. C., López-Moratella, T., & Lara-Coira, M. (2001). Computing the solar vector. Solar Energy, 70, 431–441.
Bolton, D. (1980). The Computation of Equivalent Potential Temperature. Monthly Weather Review, 108(7), 1046–1053. https://doi.org/

10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate

system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552. https://doi.org/10.1002/jgrd.50171
Carrico, C. M., Bergin, M. H., Shrestha, A. B., Dibb, J. E., Gomes, L., & Harris, J. M. (2003). The importance of carbon andmineral dust to seasonal

aerosol properties in the Nepal Himalaya. Atmospheric Environment, 37(20), 2811–2824. https://doi.org/10.1016/S1352-2310(03)00197-3
Census of India (2011). Provisional population totals: rural-urban distribution Volume 2, Issue 1 of Census of India, 2011, India. India: Office of the

Registrar General & Census Commissioner.

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,438

Acknowledgments
This work was performed with financial
support by the Ministry of Foreign
Affairs of Finland, project grants
(264242, 268004, 284536, and 287440)
received from Academy of Finland,
TEKES, Finland, and DBT, India, spon-
sored project TAQIITA (2634/31/2015),
the Centre on Excellence in
Atmospheric Science funded by the
Finnish Academy of Sciences (307331),
European Research Council
Consolidator grant project (646857),
and NordForsk Nordic Center of
Excellence eSTICC. V.V. is beneficiary of
an AXA Research Fund postdoctoral
grant. The observational data used in
this study are available freely from
supporting information with due co-
authorship or acknowledgment. The
support of D. G., T. E. R. I. was always
encouraging, and R. K. H. is thankful. The
authors would like to thank the FMI
colleague Timo Antila for his consistent
technical assistance, and staff in
Mukteshwar, TERI for their routine sup-
port in maintaining the observation
station over the period. Comments from
three anonymous reviewers are greatly
appreciated.

https://doi.org/10.1175/1520-0426(1996)013%3c0967:PCOAHS%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1996)013%3c0967:PCOAHS%3e2.0.CO;2
https://doi.org/10.1080/02786829808965551
https://doi.org/10.5194/acp-13-895-2013
https://doi.org/10.5194/acp-13-895-2013
https://doi.org/10.5194/acp-16-1271-2016
https://doi.org/10.5194/acp-16-5111-2016
https://doi.org/10.1029/97JD00928
https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1016/S1352-2310(03)00197-3


Chakraborty, A., Bhattu, D., Gupta, T., Tripathi, S. N., & Canagaratna, M. R. (2015). Real-time measurements of ambient aerosols in a polluted
Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods. Journal of Geophysical
Research: Atmospheres, 120, 9006–9019. https://doi.org/10.1002/2015JD023419

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic
aerosols. Science, 255(5043), 423–430. https://doi.org/10.1126/science.255.5043.423

Clarke, A. D., Freitag, S., Simpson, R. M. C., Hudson, J. G., Howell, S. G., Brekhovskikh, V. L., et al. (2013). Free troposphere as a major source of
CCN for the equatorial pacific boundary layer: Long-range transport and teleconnections. Atmospheric Chemistry and Physics, 13(15),
7511–7529. https://doi.org/10.5194/acp-13-7511-2013

Collaud Coen, M., Andrews, E., Aliaga, D., Andrade, M., Angelov, H., Bukowiecki, N., et al. (2018). Identification of topographic features
influencing aerosol observations at high altitude stations. Atmospheric Chemistry and Physics, 18(16), 12,289–12,313. https://doi.org/
10.5194/acp-18-12289-2018

Collaud Coen, M., Andrews, E., Asmi, A., Baltensperger, U., Bukowiecki, N., Day, D., et al. (2013). Aerosol decadal trends – Part 1: In situ
optical measurements at GAW and IMPROVE stations. Atmospheric Chemistry and Physics, 13(2), 869–894. https://doi.org/10.5194/acp-
13-869-2013

Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., et al. (2010). Minimizing light absorption
measurement artifacts of the Aethalometer: Evaluation of five correction algorithms. Atmospheric Measurement Techniques, 3(2), 457–474.
https://doi.org/10.5194/amt-3-457-2010

Collaud Coen, M., Weingartner, E., Nyeki, S., Cozic, J., Henning, S., Verheggen, B., et al. (2007). Long-term trend analysis of aerosol variables at
the high-alpine site Jungfraujoch. Journal of Geophysical Research, 112, D13213. https://doi.org/10.1029/2006JD007995

CPCB (2010). Air quality monitoring, emission inventory and source apportionment study for Indian Cities. New Delhi, India: Central Pollution
Control Board, Government of India.

CPCB. (2012). National ambient air quality status and trends in India �2010; NAAQMS/35/2011–2012.
Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., & Lehtinen, K. E. J. (2005). Formation and growth of fresh atmo-

spheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environment Research, 10, 323–336.
De Wekker, S. F. J., & Kossmann, M. (2015). Convective boundary layer heights over mountainous terrain—A review of concepts. Frontiers of

Earth Science, 3, 77. https://doi.org/10.3389/feart.2015.00077
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., & Jimenez, J. L. (2004). Particle morphology and density characterization by com-

bined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 38(12), 1185–1205. https://doi.
org/10.1080/027868290903907

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and
performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/
10.1002/qj.828

Di Girolamo, L., Bond, T. C., Bramer, D., Diner, D. J., Fettinger, F., Kahn, R. A., et al. (2004). Analysis of Multi-angle Imaging SpectroRadiometer
(MISR) aerosol optical depths over greater India during winter 2001–2004. Geophysical Research Letters, 31, L23115. https://doi.org/
10.1029/2004GL021273

Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian
Meteorological Magazine, 47, 295–308.

Dubash, N. K., Khosla, R., Rao, N. D., & Bhardwaj, A. (2018). India’s energy and emissions future: An interpretive analysis of model scenarios.
Environmental Research Letters, 13(7), 074018. https://doi.org/10.1088/1748-9326/aacc74

Duchi, R., Cristofanelli, P., Marinoni, A., Bourcier, L., Laj, P., & Calzolari, F. (2014). Synoptic-scale dust transport events in the southern Himalaya.
Aeolian Research, 13, 51–57. https://doi.org/10.1016/j.aeolia.2014.03.008

Dumka, U. C., Kaskaoutis, D. G., Srivastava, M. K., & Devara, P. C. S. (2015). Scattering and absorption properties of near-surface aerosol over
Gangetic–Himalayan region: The role of boundary-layer dynamics and long-range transport. Atmospheric Chemistry and Physics, 15(3),
1555–1572. https://doi.org/10.5194/acp-15-1555-2015

El-Askary, H., Gautam, R., Singh, R. P., & Kafatos, M. (2006). Dust storms detection over the indo-Gangetic basin using multi sensor data.
Advances in Space Research, 37(4), 728–733. https://doi.org/10.1016/j.asr.2005.03.134

Eresmaa, N., Karppinen, A., Joffre, S. M., Räsänen, J., & Talvitie, H. (2006). Mixing height determination by ceilometer. Atmospheric Chemistry
and Physics, 6(6), 1485–1493. https://doi.org/10.5194/acp-6-1485-2006

Fleming, Z. L., Monks, P. S., & Manning, A. J. (2012). Review: Untangling the influence of air-mass history in interpreting observed atmospheric
composition. Atmospheric Research, 104-105, 1–39. https://doi.org/10.1016/j.atmosres.2011.09.009

Ganguly, D., Jayaraman, A., Rajesh, T. A., & Gadhavi, H. (2006). Winter-time aerosol properties during foggy and nonfoggy days over urban
center Delhi and their implications for shortwave radiative forcing. Journal of Geophysical Research, 111, D15217. https://doi.org/10.1029/
2005JD007029

Gautam, R., Hsu, N. C., Kafatos, M., & Tsay, S.-C. (2007). Influences of winter haze on fog/low cloud over the indo-Gangetic plains. Journal of
Geophysical Research, 112, D05207. https://doi.org/10.1029/2005JD007036

Gautam, R., & Singh, M. K. (2018). Urban heat island over Delhi punches holes in widespread fog in the indo-Gangetic Plains. Geophysical
Research Letters, 45, 1114–1121. https://doi.org/10.1002/2017GL076794

Gogoi, M. M., Moorthy, K. K., Kompalli, S. K., Chaubey, J. P., Babu, S. S., Manoj, M. R., et al. (2014). Physical and optical properties of aerosols in a
free tropospheric environment: Results from long-term observations over western trans-Himalayas. Atmospheric Environment, 84,
262–274. https://doi.org/10.1016/j.atmosenv.2013.11.029

Gohm, A., Harnisch, F., Vergeiner, J., Obleitner, F., Schnitzhofer, R., Hansel, A., et al. (2009). Air pollution transport in an Alpine Valley: Results
from airborne and ground-based observations. Boundary-Layer Meteorology, 131(3), 441–463. https://doi.org/10.1007/s10546-009-9371-9

Guo, L., Turner, A. G., & Highwood, E. J. (2016). Local and Remote Impacts of Aerosol Species on Indian Summer Monsoon Rainfall in a GCM.
Journal of Climate, 29(19), 6937–6955. https://doi.org/10.1175/JCLI-D-15-0728.1

Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric
Environment, 92, 449–460. https://doi.org/10.1016/j.atmosenv.2014.04.057

HEI (2017). State of global air, A special report on global exposure to air pollution and its disease burden. https://www.stateofglobalair.org/
sites/default/files/SOGA2017_report.pdf

Heintzenberg, J., Birmili, W., Otto, R., Andreae, M. O., Mayer, J.-C., Chi, X., & Panov, A. (2011). Aerosol particle number size distributions and
particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009. Atmospheric Chemistry and Physics, 11(16), 8703–8719. https://
doi.org/10.5194/acp-11-8703-2011

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,439

https://doi.org/10.1002/2015JD023419
https://doi.org/10.1126/science.255.5043.423
https://doi.org/10.5194/acp-13-7511-2013
https://doi.org/10.5194/acp-18-12289-2018
https://doi.org/10.5194/acp-18-12289-2018
https://doi.org/10.5194/acp-13-869-2013
https://doi.org/10.5194/acp-13-869-2013
https://doi.org/10.5194/amt-3-457-2010
https://doi.org/10.1029/2006JD007995
https://doi.org/10.3389/feart.2015.00077
https://doi.org/10.1080/027868290903907
https://doi.org/10.1080/027868290903907
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2004GL021273
https://doi.org/10.1029/2004GL021273
https://doi.org/10.1088/1748-9326/aacc74
https://doi.org/10.1016/j.aeolia.2014.03.008
https://doi.org/10.5194/acp-15-1555-2015
https://doi.org/10.1016/j.asr.2005.03.134
https://doi.org/10.5194/acp-6-1485-2006
https://doi.org/10.1016/j.atmosres.2011.09.009
https://doi.org/10.1029/2005JD007029
https://doi.org/10.1029/2005JD007029
https://doi.org/10.1029/2005JD007036
https://doi.org/10.1002/2017GL076794
https://doi.org/10.1016/j.atmosenv.2013.11.029
https://doi.org/10.1007/s10546-009-9371-9
https://doi.org/10.1175/JCLI-D-15-0728.1
https://doi.org/10.1016/j.atmosenv.2014.04.057
https://www.stateofglobalair.org/sites/default/files/SOGA2017_report.pdf
https://www.stateofglobalair.org/sites/default/files/SOGA2017_report.pdf
https://doi.org/10.5194/acp-11-8703-2011
https://doi.org/10.5194/acp-11-8703-2011


Henriksson, S. V., Pietikäinen, J.-P., Hyvärinen, A.-P., Räisänen, P., Kupiainen, K., Tonttila, J., et al. (2014). Spatial distributions and seasonal
cycles of aerosol climate effects in India seen in a global climate–aerosol model. Atmospheric Chemistry and Physics, 14(18), 10,177–10,192.
https://doi.org/10.5194/acp-14-10177-2014

Herrmann, E., Weingartner, E., Henne, S., Vuilleumier, L., Bukowiecki, N., Steinbacher, M., et al. (2015). Analysis of long-term aerosol size
distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. Journal of
Geophysical Research: Atmospheres, 120, 9459–9480. https://doi.org/10.1002/2015JD023660

Hooda, R. K., Hyvärinen, A.-P., Vestenius, M., Gilardoni, S., Sharma, V. P., Vignati, E., et al. (2016). Atmospheric aerosols local-regional discri-
mination for a semi-urban area in India. Atmospheric Research, 168, 13–23. https://doi.org/10.1016/j.atmosres.2015.08.014

Hyvärinen, A.-P., Lihavainen, H., Komppula, M., Panwar, T. S., Sharma, V. P., Hooda, R. K., & Viisanen, Y. (2010). Aerosol measurements at the
Gual Pahari EUCAARI station: Preliminary results from in situ measurements. Atmospheric Chemistry and Physics, 10(15), 7241–7252.
https://doi.org/10.5194/acp-10-7241-2010

Hyvärinen, A.-P., Lihavainen, H., Komppula, M., Sharma, V. P., Kerminen, V.-M., Panwar, T. S., & Viisanen, Y. (2009). Continuous measurements
of optical properties of atmospheric aerosols in Mukteshwar, northern India. Journal of Geophysical Research, 114, D08207. https://doi.org/
10.1029/2008JD011489

Hyvärinen, A.-P., Raatikainen, T., Brus, D., Komppula, M., Panwar, T. S., Hooda, R. K., et al. (2011). Effect of the summer monsoon on aerosols at
two measurement stations in northern India – Part 1: PM and BC concentrations. Atmospheric Chemistry and Physics, 11(16), 8271–8282.
https://doi.org/10.5194/acp-11-8271-2011

Hyvärinen, A.-P., Raatikainen, T., Komppula, M., Mielonen, T., Sundström, A.-M., Brus, D., et al. (2011). Effect of the summer monsoon on
aerosols at two measurement stations in northern India – Part 2: Physical and optical properties. Atmospheric Chemistry and Physics,
11(16), 8283–8294. https://doi.org/10.5194/acp-11-8283-2011

Hyvärinen, A.-P., Vakkari, V., Laakso, L., Hooda, R. K., Sharma, V. P., Panwar, T. S., et al. (2013). Correction for a measurement artifact of the
multi-angle absorption photometer (MAAP) at high black carbon mass concentration levels. Atmospheric Measurement Techniques, 6(1),
81–90. https://doi.org/10.5194/amt-6-81-2013

International Institute for Applied Systems Analysis (IIASA) (2011). World outlook report, Emissions of air pollutants for the world energy
outlook 2011 energy scenarios, http://pure.iiasa.ac.at/9766/1/XO-11-028.pdf. (Accessed in Mar 2017.)

International Institute for Applied Systems Analysis (IIASA) (2015). http://www.iiasa.ac.at/web/home/research/researchPrograms/air
/Global_emissions.html. (accessed in June 2015.)

Indian Institute of Tropical Meteorology (IITM) (2017). All India Summer Monsoon Rainfall (AISMR) http://www.tropmet.res.in/~kolli/mol/
Monsoon/frameindex.html. (accessed in Jan 2017.)

India Meteorological Department (IMD) (2016). Personal communication.
Intergovernmental Panel on Climate Change (2007). Climate change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, Z.

Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (pp. 153–171). Cambridge, UK and New York: Cambridge University Press.

Intergovernmental Panel on Climate Change (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M.
Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report
of the IPCC (pp. 675–686). Cambridge, United Kingdom: Cambridge University Press.

Indian Space Research Organisation (ISRO) (2004). Special Land Based Campaign on Aerosols. http://www.isro.gov.in/update/04-feb-2004/
special-atmospheric-aerosol-campaign-launched. (accessed in Jan 2017.)

Kanamitsu, M. (1989). Description of the NMC Global Data Assimilation and Forecast System.Weather and Forecasting, 4(3), 335–342. https://
doi.org/10.1175/1520-0434

Kaskaoutis, D. G., Houssos, E. E., Goto, D., Bartzokas, A., Nastos, P. T., Sinha, P. R., et al. (2014). Synoptic weather conditions and aerosol epi-
sodes over Indo-Gangetic Plains, India. Climate Dynamics, 43(9-10), 2313–2331. https://doi.org/10.1007/s00382-014-2055-2

Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S. K., Sharma, M., et al. (2014). Effects of crop residue burning on aerosol prop-
erties, plume characteristics, and long-range transport over northern India. Journal of Geophysical Research: Atmospheres, 119, 5424–5444.
https://doi.org/10.1002/2013JD021357

Kaspari, S., Mayewski, P. A., Handley, M., Kang, S., Hou, S., Sneed, S., et al. (2009). A high-resolution record of atmospheric dust composition and
variability since A.D. 1650 from a Mount Everest ice core. Journal of Climate, 22(14), 3910–3925. https://doi.org/10.1175/2009JCLI2518.1

Komppula, M., Lihavainen, H., Hyvärinen, A.-P., Kerminen, V.-M., Panwar, T. S., Sharma, V. P., & Viisanen, Y. (2009). Physical properties of aerosol
particles at a Himalayan background site in India. Journal of Geophysical Research, 114, D12202. https://doi.org/10.1029/2008JD011007

Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A.-P., et al. (2012). Technical note: One year of Raman-lidar
measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure.
Atmospheric Chemistry and Physics, 12(10), 4513–4524. https://doi.org/10.5194/acp-12-4513-2012

Kotamarthi, V. R. (2010). Ganges valley aerosol experiment: Science and operations plan. DOE/SC-ARM-10-019, available at: http://www.arm.
gov/publications/programdocs/doe-sc-arm-10-019.pdf?id=25. (Accessed on 10 August 2016).

Kowol-Santen, J., Beekmann, M., Schmitgen, S., & Dewey, K. (2001). Tracer analysis of transport from the boundary layer to the free tropo-
sphere. Geophysical Research Letters, 28(15), 2907–2910. https://doi.org/10.1029/2001GL012908

Krishna Kumar, K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling themystery of Indianmonsoon failure during El Niño.
Science, 314(5796), 115–119. https://doi.org/10.1126/science.1131152

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., et al. (2016). Aura OMI observations of regional SO2 and NO2

pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics, 16(7), 4605–4629. https://doi.org/10.5194/acp-16-4605-2016
Kumar, P., Kotlarski, S., Moseley, C., Sieck, K., Frey, H., Stoffel, M., & Jacob, D. (2015). Response of Karakoram-Himalayan glaciers to climate

variability and climatic change: A regional climate model assessment. Geophysical Research Letters, 42, 1818–1825. https://doi.org/
10.1002/2015GL063392

Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., & Ojha, N. (2015). What controls the seasonal cycle of black carbon aerosols in
India? Journal of Geophysical Research: Atmospheres, 120, 7788–7812. https://doi.org/10.1002/2015JD023298

Kumar, R., Naja, M., Satheesh, S. K., Ojha, N., Joshi, H., Sarangi, T., et al. (2011). Influences of the springtime northern Indian biomass burning
over the Central Himalayas. Journal of Geophysical Research, 116, D19302. https://doi.org/10.1029/2010JD015509

Kumar, S., Kumar, S., Kaskaoutis, D. G., Singh, R. P., Singh, R. K., Mishra, A. K., et al. (2015). Meteorological, atmospheric and climatic pertur-
bations during major dust storms over indo-Gangetic Basin. Aeolian Research, 17, 15–31. https://doi.org/10.1016/j.aeolia.2015.01.006

Laakso, L., Hussein, T., Aarnio, P., Komppula, M., Hiltunen, V., Viisanen, Y., & Kulmala, M. (2003). Diurnal and annual characteristics of particle
mass and number concentrations in urban, rural and Arctic environments in Finland. Atmospheric Environment, 37(19), 2629–2641. https://
doi.org/10.1016/S1352-2310(03)00206-1

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,440

https://doi.org/10.5194/acp-14-10177-2014
https://doi.org/10.1002/2015JD023660
https://doi.org/10.1016/j.atmosres.2015.08.014
https://doi.org/10.5194/acp-10-7241-2010
https://doi.org/10.1029/2008JD011489
https://doi.org/10.1029/2008JD011489
https://doi.org/10.5194/acp-11-8271-2011
https://doi.org/10.5194/acp-11-8283-2011
https://doi.org/10.5194/amt-6-81-2013
http://pure.iiasa.ac.at/9766/1/XO-11-028.pdf
http://www.iiasa.ac.at/web/home/research/researchPrograms/air%20/Global_emissions.html
http://www.iiasa.ac.at/web/home/research/researchPrograms/air%20/Global_emissions.html
http://www.tropmet.res.in/~kolli/mol/Monsoon/frameindex.html
http://www.tropmet.res.in/~kolli/mol/Monsoon/frameindex.html
http://www.isro.gov.in/update/04-feb-2004/special-atmospheric-aerosol-campaign-launched
http://www.isro.gov.in/update/04-feb-2004/special-atmospheric-aerosol-campaign-launched
https://doi.org/10.1175/1520-0434
https://doi.org/10.1175/1520-0434
https://doi.org/10.1007/s00382-014-2055-2
https://doi.org/10.1002/2013JD021357
https://doi.org/10.1175/2009JCLI2518.1
https://doi.org/10.1029/2008JD011007
https://doi.org/10.5194/acp-12-4513-2012
http://www.arm.gov/publications/programdocs/doe-sc-arm-10-019.pdf?id=25
http://www.arm.gov/publications/programdocs/doe-sc-arm-10-019.pdf?id=25
https://doi.org/10.1029/2001GL012908
https://doi.org/10.1126/science.1131152
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.1002/2015GL063392
https://doi.org/10.1002/2015GL063392
https://doi.org/10.1002/2015JD023298
https://doi.org/10.1029/2010JD015509
https://doi.org/10.1016/j.aeolia.2015.01.006
https://doi.org/10.1016/S1352-2310(03)00206-1
https://doi.org/10.1016/S1352-2310(03)00206-1


Lehner, M., & Rotach, M. W. (2018). Current challenges in understanding and predicting transport and exchange in the atmosphere over
mountainous terrain. Atmosphere, 9(7), 276. https://doi.org/10.3390/atmos9070276

Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., et al. (2001). The Indian Ocean experiment:
Widespread air pollution from South and Southeast Asia. Science, 291(5506), 1031–1036. https://doi.org/10.1126/science.1057103

Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., et al. (2017). India is overtaking China as the World’s largest emitter of
anthropogenic sulfur dioxide. Scientific Reports, 7(1), 14304. https://doi.org/10.1038/s41598-017-14639-8

Li, Y., Wang, B., Wang, D., Li, J., & Dong, L. (2014). An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized
advection experiments. Geoscientific Model Development, 7(4), 1767–1778. https://doi.org/10.5194/gmd-7-1767-2014

Lu, Z., Streets, D. G., de Foy, B., & Krotkov, N. A. (2013). Ozone monitoring instrument observations of interannual increases in SO2 emissions
from Indian coal-fired power plants during 2005–2012. Environmental Science & Technology, 47(24), 13,993–14,000. https://doi.org/
10.1021/es4039648

Matt, F. N., Burkhart, J. F., & Pietikäinen, J.-P. (2016). Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the
catchment scale. Hydrology and Earth System Sciences, 2016, 1–35. https://doi.org/10.5194/hess-2016-551

Mehta, S. K., Ratnam, M. V., Sunilkumar, S. V., Rao, D. N., & Krishna Murthy, B. V. (2017). Diurnal variability of the atmospheric boundary layer
height over a tropical station in the Indian monsoon region. Atmospheric Chemistry and Physics, 17(1), 531–549. https://doi.org/10.5194/
acp-17-531-2017

Messerli, B., & Ives, J. (Eds) (1997). Mountains of the world: A global priority. New York, London: Parthenon.
Meybeck, M., Green, P., & Vörösmarty, C. (2001). A new typology for mountains and other relief classes.Mountain Research and Development,

21(1), 34–45. https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
Moorthy, K., Niranjan, K., Narasimhamurthy, B., Agashe, V. V., & Krishna Murthy, B. V. (1999). Aerosol climatology over India: 1. ISRO GBP MWR

Network and database, ISRO-GBP Sci. Rep. 03-99, Indian Space Res. Organ., Bangalore.
Moorthy, K. K., Satheesh, S. K., Sarin, M. M., & Panday, A. K. (2016). South Asian aerosols in perspective: Preface to the special issue.

Atmospheric Environment, 125, 307–311. https://doi.org/10.1016/j.atmosenv.2015.10.073
Moosmüller, H., & Arnott, W. P. (2003). Angular truncation errors in integrating nephelometry. Review of Scientific Instruments, 74(7),

3492–3501. https://doi.org/10.1063/1.1581355
Müller, T. (2015). Development of correction factors for Aethalometers AE31 and AE33, ACTRIS-2 WP3 Workshop, Athens 10–12

November 2015.
Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., et al. (2011). Characterization and intercomparison of

aerosol absorption photometers: Result of two intercomparison workshops. Atmospheric Measurement Techniques, 4(2), 245–268. https://
doi.org/10.5194/amt-4-245-2011

Neitola, K., Asmi, E., Komppula, M., Hyvärinen, A.-P., Raatikainen, T., Panwar, T. S., et al. (2011). New particle formation infrequently observed
in Himalayan foothills – Why? Atmospheric Chemistry and Physics, 11(16), 8447–8458. https://doi.org/10.5194/acp-11-8447-2011

Ni, H., Han, Y., Cao, J., Chen, L.-W. A., Tian, J., Wang, X., & Wang, P. (2015). Emission characteristics of carbonaceous particles and trace gases
from open burning of crop residues in China. Atmospheric Environment, 123, 399–406. https://doi.org/10.1016/j.atmosenv.2015.05.007

Nieminen, T., Kerminen, V.-M., Petäjä, T., Aalto, P. P., Arshinov, M., Asmi, E., et al. (2018). Global analysis of continental boundary layer new
particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 18(19), 14,737–14,756. https://doi.org/10.5194/
acp-18-14737-2018

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian emission inventory of anthropogenic emission
sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7(16), 4419–4444. https://doi.org/10.5194/acp-7-4419-2007

Pal, S., Lee, T. R., Phelps, S., & De Wekker, S. F. J. (2014). Impact of atmospheric boundary layer depth variability and wind reversal on the
diurnal variability of aerosol concentration at a valley site. Science of the Total Environment, 496, 424–434. https://doi.org/10.1016/j.
scitotenv.2014.07.067

Panwar, T. S., Hooda, R. K., Lihavainen, H., Hyvärinen, A. P., Sharma, V. P., & Viisanen, Y. (2013). Atmospheric aerosols at a regional background
Himalayan site—Mukteshwar, India. Environmental Monitoring and Assessment, 185(6), 4753–4764. https://doi.org/10.1007/s10661-012-
2902-8

Pietikäinen, J.-P., Kupiainen, K., Klimont, Z., Makkonen, R., Korhonen, H., Karinkanta, R., et al. (2015). Impacts of emission reductions on aerosol
radiative effects. Atmospheric Chemistry and Physics, 15(10), 5501–5519. https://doi.org/10.5194/acp-15-5501-2015

Pietikäinen, J.-P., O’Donnell, D., Teichmann, C., Karstens, U., Pfeifer, S., Kazil, J., et al. (2012). The regional aerosol-climate model REMO-HAM.
Geoscientific Model Development, 5(6), 1323–1339. https://doi.org/10.5194/gmd-5-1323-2012

Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A., et al. (2016). Parameterization of single-scattering albedo
(SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmospheric Chemistry and
Physics, 16(15), 9549–9561. https://doi.org/10.5194/acp-16-9549-2016

Poltera, Y., Martucci, G., Collaud Coen, M., Hervo, M., Emmenegger, L., Henne, S., et al. (2017). PathfinderTURB: An automatic boundary layer
algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch. Atmospheric
Chemistry and Physics, 17(16), 10,051–10,070. https://doi.org/10.5194/acp-17-10051-2017

Prabha, T. V., Karipot, A., Axisa, D., Kumari, B. P., Maheskumar, R. S., Konwar, M., et al. (2012). Scale interactions near the foothills of Himalayas
during CAIPEEX. Journal of Geophysical Research, 117, D10203. https://doi.org/10.1029/2011JD016754

Raatikainen, T., Brus, D., Hooda, R. K., Hyvärinen, A.-P., Asmi, E., Sharma, V. P., et al. (2017). Size-selected black carbon mass distributions and
mixing state in polluted and clean environments of northern India. Atmospheric Chemistry and Physics, 17(1), 371–383. https://doi.org/
10.5194/acp-17-371-2017

Raatikainen, T., Hyvarinen, A.-P., Hatakka, J., Panwar, T. S., Hooda, R. K., Sharma, V. P., & Lihavainen, H. (2014). The effect of boundary layer
dynamics on aerosol properties at the indo-Gangetic plains and at the foothills of the Himalayas. Atmospheric Environment, 89, 548–555.
https://doi.org/10.1016/j.atmosenv.2014.02.058

Rajput, P., Sarin, M. M., Sharma, D., & Singh, D. (2014). Characteristics and emission budget of carbonaceous species from postharvest
agricultural-waste burning in source region of the indo-Gangetic plain. Tellus B, 66, ID 21026.

Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., et al. (2001). Indian Ocean experiment: An integrated
analysis of the climate forcing and effects of the great indo-Asian haze. Journal of Geophysical Research, 106(D22), 28,371–28,398. https://
doi.org/10.1029/2001JD900133

Rao, S., Klimont, Z., Leitao, J., Riahi, K., van Dingenen, R., Reis, L. A., et al. (2016). A multi-model assessment of the co-benefits of climate
mitigation for global air quality. Environmental Research Letters, 11(12), 124013. https://doi.org/10.1088/1748-9326/11/12/124013

Rotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., & Wagner, J. S. (2015). On the vertical exchange of heat, mass, and momentum
over complex, mountainous terrain. Frontiers in Earth Science, 3, 76. https://doi.org/10.3389/feart.2015.00076

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,441

https://doi.org/10.3390/atmos9070276
https://doi.org/10.1126/science.1057103
https://doi.org/10.1038/s41598-017-14639-8
https://doi.org/10.5194/gmd-7-1767-2014
https://doi.org/10.1021/es4039648
https://doi.org/10.1021/es4039648
https://doi.org/10.5194/hess-2016-551
https://doi.org/10.5194/acp-17-531-2017
https://doi.org/10.5194/acp-17-531-2017
https://doi.org/10.1659/0276-4741(2001)021%5b0034:ANTFMA%5d2.0.CO;2
https://doi.org/10.1016/j.atmosenv.2015.10.073
https://doi.org/10.1063/1.1581355
https://doi.org/10.5194/amt-4-245-2011
https://doi.org/10.5194/amt-4-245-2011
https://doi.org/10.5194/acp-11-8447-2011
https://doi.org/10.1016/j.atmosenv.2015.05.007
https://doi.org/10.5194/acp-18-14737-2018
https://doi.org/10.5194/acp-18-14737-2018
https://doi.org/10.5194/acp-7-4419-2007
https://doi.org/10.1016/j.scitotenv.2014.07.067
https://doi.org/10.1016/j.scitotenv.2014.07.067
https://doi.org/10.1007/s10661-012-2902-8
https://doi.org/10.1007/s10661-012-2902-8
https://doi.org/10.5194/acp-15-5501-2015
https://doi.org/10.5194/gmd-5-1323-2012
https://doi.org/10.5194/acp-16-9549-2016
https://doi.org/10.5194/acp-17-10051-2017
https://doi.org/10.1029/2011JD016754
https://doi.org/10.5194/acp-17-371-2017
https://doi.org/10.5194/acp-17-371-2017
https://doi.org/10.1016/j.atmosenv.2014.02.058
https://doi.org/10.1029/2001JD900133
https://doi.org/10.1029/2001JD900133
https://doi.org/10.1088/1748-9326/11/12/124013
https://doi.org/10.3389/feart.2015.00076


Sahu, L. K., Sheel, V., Pandey, K., Yadav, R., Saxena, P., & Gunthe, S. (2015). Regional biomass burning trends in India: Analysis of satellite fire
data. Journal of Earth System Science, 124(7), 1377–1387. https://doi.org/10.1007/s12040-015-0616-3

Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-Maenhout, G., et al. (2017). Comparison of emissions inventories of anthro-
pogenic air pollutants and greenhouse gases in China. Atmospheric Chemistry and Physics, 17(10), 6393–6421. https://doi.org/10.5194/acp-
17-6393-2017

Satheesh, S. K., Moorthy, K. K., Babu, S. S., Vinoj, V., & Dutt, C. B. S. (2008). Climate implications of large warming by elevated aerosol over India.
Geophysical Research Letters, 35, L19809. https://doi.org/10.1029/2008GL034944

Sati, A. P., & Mohan, M. (2014). Analysis of air pollution during a severe smog episode of November 2012 and the Diwali festival over Delhi,
India. International Journal of Remote Sensing, 35(19), 6940–6954. https://doi.org/10.1080/01431161.2014.960618

Seibert, P., Beyrich, F., Gryning, S.-E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the
determination of the mixing height. Atmospheric Environment, 34(7), 1001–1027. https://doi.org/10.1016/S1352-2310(99)00349-0

Seinfeld, J., & Pandis, S. (2006). Atmospheric chemistry and physics: From air pollution to climate change, (II ed.). New York: John Wiley & Sons,
Inc.

Serafin, S., Adler, B., Cuxart, J., De Wekker, S. F. J., Gohm, A., Grisogono, B., et al. (2018). Exchange processes in the atmospheric boundary layer
over mountainous terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102

Singh, N., Solanki, R., Ojha, N., Janssen, R. H. H., Pozzer, A., & Dhaka, S. K. (2016). Boundary layer evolution over the central Himalayas from
radio wind profiler and model simulations. Atmospheric Chemistry and Physics, 16(16), 10,559–10,572. https://doi.org/10.5194/acp-16-
10559-2016

Singh, R. P., & Kaskaoutis, D. G. (2014). Crop residue burning: A threat to south Asian air quality. Eos Transactions American Geophysical Union,
95(37), 333–334. https://doi.org/10.1002/2014EO370001

Smith, R. B., Doyle, J. D., Jiang, Q., & Smith, S. A. (2007). Alpine gravity waves: Lessons from MAP regarding mountain waves generation and
braking. Quarterly Journal of the Royal Meteorological Society, 133(625), 917–936. https://doi.org/10.1002/qj.103

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s hysplit atmospheric transport and dispersion
modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., et al. (2005). The aerosol-climate model ECHAM5-HAM.
Atmospheric Chemistry and Physics, 5(4), 1125–1156. https://doi.org/10.5194/acp-5-1125-2005

Stock, M., Cheng, Y. F., Birmili, W., Massling, A., Wehner, B., Müller, T., et al. (2011). Hygroscopic properties of atmospheric aerosol particles
over the eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions. Atmospheric
Chemistry and Physics, 11(9), 4251–4271. https://doi.org/10.5194/acp-11-4251-2011

Stull, R. B. (1973). Inversion rise model based on penetrative convection. Journal of the Atmospheric Sciences, 30(6), 1092–1099. https://doi.
org/10.1175/1520-0469(1973)030<1092:IRMBOP>2.0.CO;2

Stull, R. B. (1988). An introduction to boundary layer meteorology, Atmospheric Sciences Library, (p. 666). Dordrecht: Kluwer Academic
Publishers. https://doi.org/10.1007/978-94-009-3027-8

Tennekes, H. (1973). A model for the dynamics of the inversion above a convective boundary layer. Journal of the Atmospheric Sciences, 30(4),
558–567. https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2

Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34(7), 1149–1152.
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

United States Geological Survey (2016). https://ngmdb.usgs.gov/ngmdb/ngmdb_home.htm. (Accessed in Jan 2017.)
Vakkari, V., Beukes, J. P., Dal Maso, M., Aurela, M., Josipovic, M., & van Zyl, P. G. (2018). Major secondary aerosol formation in southern African

open biomass burning plumes. Nature Geoscience, 11(8), 580–583. https://doi.org/10.1038/s41561-018-0170-0
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., et al. (2010). Global fire emissions and the contribution of

deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11,707–11,735. https://
doi.org/10.5194/acp-10-11707-2010

Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J.-F., Crouzille, B., et al. (2006). Emissions from open biomass burning in India:
Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land
cover data. Global Biogeochemical Cycles, 20, GB2013. https://doi.org/10.1029/2005GB002547

Weigel, A. P., Chow, F. K., & Rotach, M. W. (2007). The effect of mountainous topography on moisture exchange between the “surface” and
the free atmosphere. Boundary-Layer Meteorology, 125(2), 227–244. https://doi.org/10.1007/s10546-006-9120-2

Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., & Baltensperger, U. (2003). Absorption of light by soot particles: Determination
of the absorption coefficient by means of aethalometers. Journal of Aerosol Science, 34(10), 1445–1463. https://doi.org/10.1016/S0021-
8502(03)00359-8

World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) (2003). Aerosol measurement procedures, guidelines and
recommendations, Edition 2003, GAW Report No. 153, http://library.wmo.int/pmb_ged/wmo-td_1178.pdf

World Meteorological Organization/Global Atmosphere Watch (WMO/GAW). (2016). Aerosol measurement procedures, guidelines and
recommendations, 2nd Edition 2016, GAW Report No. 227, https://library.wmo.int/doc_num.php?explnum_id=3073

Xavier, P. K., Marzin, C., & Goswami, B. N. (2007). An objective definition of the Indian summer monsoon season and a new perspective on the
ENSO–monsoon relationship. Quarterly Journal of the Royal Meteorological Society, 133(624), 749–764. https://doi.org/10.1002/qj.45

Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., et al. (2009). Emissions from biomass burning in the Yucatan.
Atmospheric Chemistry and Physics, 9(15), 5785–5812. https://doi.org/10.5194/acp-9-5785-2009

Zardi, D., & Whiteman, C. D. (2013). Diurnal mountain wind systems. In F. Chow, S. F. J. De Wekker, & B. Synder (Eds.), Mountain weather
research and forecasting: Recent progress and current challenges, (pp. 35–119). New York, NY: Springer.

Zhang, K., O’Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., et al. (2012). The global aerosol-climate model ECHAM-HAM, version 2:
Sensitivity to improvements in process representations. Atmospheric Chemistry and Physics, 12(19), 8911–8949. https://doi.org/10.5194/
acp-12-8911-2012

Zhang, T., Wooster, M. J., Green, D. C., & Main, B. (2015). New field-based agricultural biomass burning trace gas, PM2.5, and black carbon
emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment, 121, 22–34. https://doi.org/
10.1016/j.atmosenv.2015.05.010

Ziemba, L. D., Griffin, R. J., Cottrell, L. D., Beckman, P. J., Zhang, Q., Varner, R. K., et al. (2010). Characterization of aerosol associated with
enhanced small particle number concentrations in a suburban forested environment. Journal of Geophysical Research, 115, D12206.
https://doi.org/10.1029/2009JD012614

Zou, X., Li, Y., Li, J., & Wang, B. (2016). Advection errors in an orthogonal terrain-following coordinate: Idealized 2-D experiments using steep
terrains. Atmospheric Science Letters, 17(3), 243–250. https://doi.org/10.1002/asl.650

10.1029/2018JD029744Journal of Geophysical Research: Atmospheres

HOODA ET AL. 13,442

https://doi.org/10.1007/s12040-015-0616-3
https://doi.org/10.5194/acp-17-6393-2017
https://doi.org/10.5194/acp-17-6393-2017
https://doi.org/10.1029/2008GL034944
https://doi.org/10.1080/01431161.2014.960618
https://doi.org/10.1016/S1352-2310(99)00349-0
https://doi.org/10.3390/atmos9030102
https://doi.org/10.5194/acp-16-10559-2016
https://doi.org/10.5194/acp-16-10559-2016
https://doi.org/10.1002/2014EO370001
https://doi.org/10.1002/qj.103
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.5194/acp-5-1125-2005
https://doi.org/10.5194/acp-11-4251-2011
https://doi.org/10.1175/1520-0469(1973)030%3c1092:IRMBOP%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1973)030%3c1092:IRMBOP%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1973)030%3c1092:IRMBOP%3e2.0.CO;2
https://doi.org/10.1007/978-94-009-3027-8
https://doi.org/10.1175/1520-0469(1973)030%3c0558:AMFTDO%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1973)030%3c0558:AMFTDO%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034%3c1149:TIOPOT%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034%3c1149:TIOPOT%3e2.0.CO;2
https://ngmdb.usgs.gov/ngmdb/ngmdb_home.htm
https://doi.org/10.1038/s41561-018-0170-0
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.1029/2005GB002547
https://doi.org/10.1007/s10546-006-9120-2
https://doi.org/10.1016/S0021-8502(03)00359-8
https://doi.org/10.1016/S0021-8502(03)00359-8
http://library.wmo.int/pmb_ged/wmo-td_1178.pdf
https://library.wmo.int/doc_num.php?explnum_id=3073
https://doi.org/10.1002/qj.45
https://doi.org/10.5194/acp-9-5785-2009
https://doi.org/10.5194/acp-12-8911-2012
https://doi.org/10.5194/acp-12-8911-2012
https://doi.org/10.1016/j.atmosenv.2015.05.010
https://doi.org/10.1016/j.atmosenv.2015.05.010
https://doi.org/10.1029/2009JD012614
https://doi.org/10.1002/asl.650


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


