99 research outputs found

    Molecular basis of Diamond–Blackfan anemia: structure and function analysis of RPS19

    Get PDF
    Diamond–Blackfan anemia (DBA) is a rare congenital disease linked to mutations in the ribosomal protein genes rps19, rps24 and rps17. It belongs to the emerging class of ribosomal disorders. To understand the impact of DBA mutations on RPS19 function, we have solved the crystal structure of RPS19 from Pyrococcus abyssi. The protein forms a five α-helix bundle organized around a central amphipathic α-helix, which corresponds to the DBA mutation hot spot. From the structure, we classify DBA mutations relative to their respective impact on protein folding (class I) or on surface properties (class II). Class II mutations cluster into two conserved basic patches. In vivo analysis in yeast demonstrates an essential role for class II residues in the incorporation into pre-40S ribosomal particles. This data indicate that missense mutations in DBA primarily affect the capacity of the protein to be incorporated into pre-ribosomes, thus blocking maturation of the pre-40S particles

    Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex

    Get PDF
    To study the nuclear export of preribosomes, ribosomal RNAs were detected by in situ hybridization using fluorescence and EM, in the yeast Saccharomyces cerevisiae. In wild-type cells, semiquantitative analysis shows that the distributions of pre-40S and pre-60S particles in the nucleolus and the nucleoplasm are distinct, indicating uncoordinated transport of the two subunits within the nucleus. In cells defective for the activity of the GTPase Gsp1p/Ran, ribosomal precursors accumulate in the whole nucleus. This phenotype is reproduced with pre-60S particles in cells defective in pre-rRNA processing, whereas pre-40S particles only accumulate in the nucleolus, suggesting a tight control of the exit of the small subunit from the nucleolus. Examination of nucleoporin mutants reveals that preribosome nuclear export requires the Nup82p–Nup159p–Nsp1p complex. In contrast, mutations in the nucleoporins forming the Nup84p complex yield very mild or no nuclear accumulation of preribosome. Interestingly, domains of Nup159p required for mRNP trafficking are not necessary for preribosome export. Furthermore, the RNA helicase Dbp5p and the protein Gle1p, which interact with Nup159p and are involved in mRNP trafficking, are dispensable for ribosomal transport. Thus, the Nup82p–Nup159p–Nsp1p nucleoporin complex is part of the nuclear export pathways of preribosomes and mRNPs, but with distinct functions in these two processes

    Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2

    Get PDF
    During their biogenesis, 40S ribosomal subunit precursors are exported from the nucleus to the cytoplasm, where final maturation occurs. In this study, we show that the protein kinase human Rio2 (hRio2) is part of a late 40S preribosomal particle in human cells. Using a novel 40S biogenesis and export assay, we analyzed the contribution of hRio2 to late 40S maturation. Although hRio2 is not absolutely required for pre-40S export, deletion of its binding site for the export receptor CRM1 decelerated the kinetics of this process. Moreover, in the absence of hRio2, final cytoplasmic 40S maturation is blocked because the recycling of several trans-acting factors and cytoplasmic 18S-E precursor ribosomal RNA (rRNA [pre-rRNA]) processing are defective. Intriguingly, the physical presence of hRio2 but not its kinase activity is necessary for the release of hEnp1 from cytoplasmic 40S precursors. In contrast, hRio2 kinase activity is essential for the recycling of hDim2, hLtv1, and hNob1 as well as for 18S-E pre-rRNA processing. Thus, hRio2 is involved in late 40S maturation at several distinct steps

    Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism

    Get PDF
    Eukaryotic ribosomes are synthesized in a hierarchical process driven by a plethora of assembly factors, but how maturation events at physically distant sites on pre- ribosomes are coordinated is poorly understood. Using functional analyses and cryo- EM, we show that ribosomal protein Rps20 orchestrates communication between two multi-step maturation events across the pre-40S subunit. Our study reveals that during pre-40S maturation, formation of essential contacts between Rps20 and Rps3 permits assembly factor Ltv1 to recruit the Hrr25 kinase, thereby promoting Ltv1 phosphorylation. In parallel, a deeply buried Rps20 loop reaches to the opposite pre- 40S side, where it stimulates Rio2 ATPase activity. Both cascades converge to the final maturation steps releasing Rio2 and phosphorylated Ltv1. We propose that conformational proofreading exerted via Rps20 constitutes a checkpoint permitting assembly factor release and progression of pre-40S maturation only after completion of all earlier maturation steps

    Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism

    Get PDF
    Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts
    • …
    corecore