88,035 research outputs found

    On Normal Forms for Levi-flat hypersurfaces with an Isolated Line Singularity

    Full text link
    We prove the existence of normal forms for some local real-analytic Levi-flat hypersurfaces with an isolated line singularity. We also give sufficient conditions for that a Levi-flat hypersurface with a complex line as singularity to be a pullback of a real-analytic curve in C via a holomorphic function.Comment: 9 pages, accepted to Arkiv f\"or Matemati

    From thermal to excited-state quantum phase transitions ---the Dicke model

    Get PDF
    We study the thermodynamics of the full version of the Dicke model, including all the possible values of the total angular momentum jj, with both microcanonical and canonical ensembles. We focus on how the excited-state quantum phase transition, which only appears in the microcanonical description of the maximum angular momentum sector, j=N/2j=N/2, change to a standard thermal phase transition when all the sectors are taken into account. We show that both the thermal and the excited-state quantum phase transitions have the same origin; in other words, that both are two faces of the same phenomenon. Despite all the logarithmic singularities which characterize the excited-state quantum phase transition are ruled out when all the jj-sectors are considered, the critical energy (or temperature) still divides the spectrum in two regions: one in which the parity symmetry can be broken, and another in which this symmetry is always well defined.Comment: Submitted to PRE. Comments are welcome. V2: Updated to match published versio

    Behavioral modeling of PWL analog circuits using symbolic analysis

    Get PDF
    Behavioral models are used both for top-down design and for bottom-up verification. During top-down design, models are created that reflect the nominal behavior of the different analog functions, as well as the constraints imposed by the parasitics. In this scenario, the availability of symbolic modeling expressions enable designers to get insight on the circuits, and reduces the computational cost of design space exploration. During bottom-up verification, models are created that capture the topological and constitutive equations of the underlying devices into behavioral descriptions. In this scenario symbolic analysis is useful because it enables to automatically obtain these descriptions in the form of equations. This paper includes an example to illustrate the use of symbolic analysis for top-down design.Comisión Interministerial de Ciencia y Tecnología TIC97-058
    corecore