Conformational proofreading of distant 40 S ribosomal subunit maturation events by a long-range communication mechanism

Mitterer et al., 2019

Supplementary Figure 1

a

b

Supplementary Figure 1. Interaction of Ltv1 with Hrr25 and Enp1. a Ltv1 is the main interaction partner of Hrr25 on the pre-40S particle. Full-length Hrr25, fused to the Gal4 DNA-binding domain (Hrr25-BD), was tested for Y 2 H interaction with the depicted AFs and r-proteins located at the head of the 40 S subunit, fused to the Gal4 activation domain (AD). Cells were spotted in 10 -fold serial dilutions on SDC-Leu-Trp, SDC-His-Leu-Trp (-his; growth on this medium indicates a weak interaction), and SDC-Ade-Leu-Trp (-ade; growth on this medium indicates a strong interaction) plates. Note that full-length Hrr25 shows some self-activation of the HIS3 reporter gene (left panel). The interactions were also tested using a C-terminally truncated Hrr25 variant (1-394) carrying additionally an exchange of a catalytically important residue (K38R), which showed almost no self-activation (right panel). Note that Ltv1 was the only protein showing a strong interaction with Hrr25 in both conditions. A weaker interaction was observed between Hrr25 and Rps15, which was however lost with the truncated Hrr25 variant. b The bystin domain of Enp1 mediates the interaction with Ltv1. The indicated Enp1 Gal4 DNA-binding domain fusions (Enp1-BD) were tested for Y2H interaction with an Ltv1 Gal4 activation domain fusion (Ltv1-AD). See a for a detailed description.

Supplementary Figure 2

Supplementary Figure 2. Ltv1 has two minimal, largely overlapping Hrr25 and Enp1 binding sites. The indicated Ltv1 truncation variants, fused to the Gal4 activation domain (Ltv1-AD), were tested for interaction with Hrr25(1-394).K38R, full-length Enp1, and Enp1.155C (amino acids 155-483), fused to the Gal4 DNAbinding domain (BD). See legend of Supplementary Fig. 1 for a detailed description.

Supplementary Figure 3

Supplementary Figure 3. Localization of Ltv1 and Enp1 in rio2.D253A mutants and growth phenotype of rps20 loop mutants. a Alignment of the C-terminal sequence of Ltv1. The amino acids comprising its nuclear export sequence (NES) are marked in red and the three exchanges in the Ltv1-NES3>A reporter construct are indicated. \mathbf{b} The subcellular localization of Enp1-GFP and the Ltv1-NES3>A-GFP reporter construct (note that the point mutations in the C-terminal NES of Ltv1 lead to a predominantly nuclear steady-state localization of the protein), was assessed by fluorescence microscopy in cells expressing wild-type RIO2 or the catalytically inactive rio2.D253A allele, revealing that recycling of these AFs back to the nucleus relies on the ATPase activity of Rio2. Scale bar is $5 \mu \mathrm{~m}$. c, d An RPS20 (rps204) shuffle strain was transformed with plasmid-based wild-type RPS20 or the indicated rps20 mutant alleles. Representative transformants were spotted in 10 -fold serial dilutions on SDC-Leu and SDC+5-FOA plates and incubated at $30^{\circ} \mathrm{C}$ for 2 days (left panels). After plasmid shuffling on 5-FOA, strains were spotted in 10-fold serial dilutions on YPD plates and incubated at the indicated temperatures for 1.5 or 2 days (right panels).

Supplementary Figure 4

Supplementary Figure 4. Rps20 variants are incorporated into pre-40S particles. a An RPS20 (rps204) shuffle TSR1-TAP strain was transformed with plasmid-based wild-type RPS20 or the indicated rps20 mutant alleles, either untagged or fused to an N-terminal HA-tag. After plasmid shuffling on 5-FOAcontaining plates, cells were spotted on YPD plates and incubated at $30^{\circ} \mathrm{C}$ for 2 days. Note that N-terminal HA-tag fusion had no effect on growth, indicating the tag does not disturb the function of Rps20. b Tsr1-TAP particles were isolated from cells expressing the indicated Rps20 variants, fused to an N-terminal HA-tag, and analyzed by SDS-PAGE and Western blotting (lysates and eluates). Note that all HA-Rps20 variants were incorporated into pre-40S particles.

Supplementary Figure 5

Supplementary Figure 5. Accumulation of AFs in S20 isolated from cells expressing either wild-type RPS20 (left lane) or the rps204loop mutant allele (right lane) and analyzed by SDS-PAGE and Coomassie staining. The asterisk indicates the band of the TEV protease, which was used to elute pre-40S particles from the IgG beads.

Supplementary Figure 6

Supplementary Figure 6. The rps3.K7/K10>ED N-domain-assembly mutant prevents Ltv1 phosphorylation and release. Tsr1-TAP particles were isolated from cells expressing wild-type RPS3 or the $r p s 3(\mathrm{~K} 7 / \mathrm{K} 10>\mathrm{ED}$) mutant allele and the in vitro phosphorylation assay was performed as described in Fig. 4. Eluates were analyzed by Western blotting using the indicated antibodies. Note that, because the used Rps3 antibody was raised against a short N-terminal epitope of Rps3 including lysines K7 and K10, Rps3 detection is impaired in samples derived from the rps3.K7/K10>ED mutant.

Supplementary Figure 7

Supplementary Figure 7: Cryo-EM image processing scheme, and cryo-EM maps and model validations. a Single particle analysis strategy applied for obtaining the C1- and C2-S20 ${ }^{\text {loop structures. Final full C1- }}$ and C2-S20 ${ }^{\text {loop maps are presented as viewed from the beak, with angular coverage for both map }}$ reconstructions. Spike heights are proportional to orientation occurrences. b Gold standard FSC curves for the various cryo-EM maps obtained. c Validation of the atomic models derived from the cryo-EM maps of C1S200loop (left panel) and C2-S200loop (right panel) pre-40S particles, as calculated by REFMAC5 (see Supplementary Table 1 for model refinement details). d Local resolutions of the different cryo-EM maps shown in a, as estimated by ResMap1. For all C1- and C2-S20ロloop maps, left panels represent surface views as seen from the solvent side, middle panels are cutaway views from the same side, and right panels are surface views seen from the 60S interface. For the "Dim1" map, the left panel is a surface view as seen from the 60S interface, the middle panel is a cutaway view with the same orientation, and the right panel is a surface view seen from the solvent side of the particle.

Supplementary Figure 8

Supplementary Figure 8. Overview and details of the structure of C1-S20 lloop pre-40S particles. a Atomic model of C1-S20 ${ }^{\text {loop pre-40S particles viewed from the solvent side (left panel), 60S interface }}$ (middle panel), and the beak (right panel). AFs and r-proteins of interest have been colored as indicated in the model, other r-proteins are displayed in pale blue, rRNA in grey. b Density attributed to Rio2 segmented from the C1-S200loop cryo-EM map (transparent blue surface), fitted either with the X-ray structure of ATPbound Rio2 from A. fulgidus (PDB 1ZAO) ${ }^{2}$ (upper panel) or the C1-S204loop modeled Rio2. The catalytic pocket is indicated by a dotted ellipsoid and catalytically important residues are depicted, revealing the opening of the ATP-binding domain of Rio2 in C1-S20Дloop pre-40S particles. c Details of the platform region of C1-S204loop pre-40S particles. Cryo-EM density surface is shown in pale blue. rRNA is shown in grey and the two nucleotides (A1801, A1802) following cleavage site D, which are distinguished in the EM density, are indicated. Pno1, Rps14, and Rps1 are shown in orange, blue, and green, respectively.

Supplementary Figure 9

Supplementary Figure 9: Overview and details of the structure of C2-S20 loop pre-40S particles. a Atomic model of C2-S204loop pre-40S particles viewed from the solvent side (left panel), 60S interface (middle panel), and the beak (right panel). AFs and r-proteins of interest have been colored as indicated in the model, other r-proteins are displayed in pale blue, rRNA is displayed in grey. Low-resolution densities attributed to Rio2, Tsr1, and unidentified Factor X (resembling factor X described in ${ }^{3}$) have been segmented from the cryo-EM map and are indicated but have not been modeled in the C2-S20 Dloop atomic model. b rRNA helix h44 of C2-S204loop pre-40S particles is in an immature position. The cryo-EM density map corresponding to this helix has been segmented; the atomic model of rRNA h44 in C2-S200loop is represented in cyan, and rRNA h44 as found in the mature 40 S subunit (PDB 4V88) is in orange. c Platform view of C2-S20 Rps 14, and rRNA helix h23 and the 18S rRNA 3' end cannot be fitted into it, suggesting high dynamics of the platform region.

Supplementary Figure 10

Supplementary Figure 10. Comparison of the positioning of Rps3 and the beak region of (pre)-40S subunits in the atomic models of $\mathbf{a}, \mathrm{C} 1-$ S20 ${ }^{\text {loop pre-40S particles, } \mathbf{b}, \mathrm{C} 2-S 20 \Delta l o o p ~ p r e-40 S ~ p a r t i c l e s, ~} \mathbf{c}$, pre-40S particles purified with a mutant version of Nob1 as bait (PDB 6FAI), and d, mature 40 S ribosomal subunit (PDB 4V88). Segmented cryo-EM densities of the C1-S200loop and C2-S200loop maps corresponding to Rps20, Rps3, Enp1, and Rps10 are represented in green, red, purple, and turquoise, respectively. Some individual residues within the structures are labeled to allow better orientation.

Supplementary Figure 11

Supplementary Figure 11: Fitting of the factor X cryo-EM density present in the C2-S204loop map with the atomic model of Hr22 (PDB 5CZO). Left panels represent the cryo-EM density corresponding to factor X , segmented from the C2-Head only map, and fitted with the atomic model of Hrr25 using the "fit to segment" option in Chimera. Right panels represent this fitting in the context of the C2-S20Aloop pre-40S head atomic model, viewed from \mathbf{a}, under the head and \mathbf{b}, the beak.

Supplementary Table 1. Cryo-EM data collection, atomic model refinement, and validation statistics.

	C1S204Loop (EMD-4792) (PDB 6RBD)	C2S204Loop (EMD-4793) (PDB 6RBE)	$\begin{aligned} & \text { C1-Head } \\ & \text { EMD- } \\ & 4794 \end{aligned}$	C2-Head EMD4795	$\begin{aligned} & \hline \text { Dim1 } \\ & \text { EMD- } \\ & 4796 \end{aligned}$
Data collection and processing					
Magnification	130,000	130,000	130,000	130,000	130,000
Voltage (kV)	300	300	300	300	300
Electron exposure (e-/A ${ }^{2}$)	32.4	32.4	32.4	32.4	32.4
Defocus range ($\mu \mathrm{m}$)	0.8-3.0	0.8-3.0	0.8-3.0	0.8-3.0	0.8-3.0
Pixel size (\AA)	1.067	1.067	1.067	1.067	1.067
Symmetry imposed	C1	C1	C1	C1	C1
Initial particle images (no.)	344,959	344,959	344,959	344,959	344,959
Final particle images (no.)	54,130	42,901	54,130	42,901	71,352
Map resolution (\AA)	3.47	3.79	3.75	3.75	3.15
FSC threshold	0.143	0.143	0.143	0.143	0.143
Map resolution range (\AA)	3.2-7.8	3.2-7.8	3.6-6.6	3.6-6.6	2.9-6.9
Refinement					
Initial model used (PDB code)	6FAI	4V88			
Model resolution (\AA)	3.81	3.92			
FSC threshold	0.5	0.5			
Model resolution range (\AA)					
Map sharpening B factor $\left(\AA^{2}\right)$	-66	-83			
Model composition					
Non-hydrogen atoms	81048	72721			
Protein residues	5504	4512			
RNA bases	1777	1750			
B factors (\AA^{2})					
Protein	229	241			
R.m.s. deviations					
Bond lengths (\AA)	0.01	0.01			
Bond angles (${ }^{\circ}$)	0.96	1.23			
Validation					
MolProbity score	1.79	2.21			
Clashscore	7.79	9.15			
Poor rotamers (\%)	0.28	1.35			
Ramachandran plot					
Favored (\%)	94.63	86.84			
Allowed (\%)	5.34	11.92			
Disallowed (\%)	0.04	1.24			
Validation (RNA)					
correct sugar puckers (\%)	99.04	97.2			
Good backbone conformations	65.28	64.29			

Supplementary Table 2. Yeast strains

Name	Genotype	Source
W303	```ade2-1, his3-11, 15, leu2-3,112, trp1-1, ura3-1, can1-100```	7
RIO2 Shuffle	W303 MATa rio2::HIS3MX4 [pRS316-RIO2-GFP]	this study
RIO2 Shuffle $\Delta I t v 1$	W303 MATa rio2::HIS3MX4 [pRS316-RIO2-GFP] ltv1: kanMX4	this study
RIO2 Shuffle ENP1-GFP	W303 MATa rio2::HIS3MX4 [pRS316-RIO2-GFP] ENP1-GFP::natNT2	this study
RIO2 Shuffle RPS20 Shuffle	W303 rps20::natNT2 ade3::kanMX [pHT4467 $\Delta-$ RPS20] rio2::HIS3MX4 [pRS316-RIO2-GFP]	this study
RIO2 Shuffle RPS3 Shuffle	W303 rps3::natNT2 ade3::kanMX4 [pHT44674RPS3] rio2::HIS3MX4 [pRS316-RIO2-GFP]	this study
RPS20 Shuffle	W303 MATa rps20::natNT2 ade3::kanMX4 [pHT4467د-RPS20]	8
RPS20 Shuffle TSR1-TAP	W303 MATa rps20::natNT2 ade3::kanMX4 [pHT44674-RPS20] TSR1-TAP::HIS3MX4	this study
RPS20 Shuffle $\Delta t t v 1$	W303 MATa rps20::natNT2 [pHT4467a-RPS20] Itv1::HIS3MX4 ade3::kanMX4	8
RPS20 Shuffle RPS3 Shuffle	W303 MATa rps3::natNT2 [pHT44674-RPS3] rps20::HIS3MX4 [YCplac33- RPS20] ade3::kanMX4	8
RPS3 Shuffle TSR1-TAP	W303 MATa rps3::natNT2 [pHT44674-RPS3] TSR1TAP::HIS3MX4	this study
RIO2 Shuffle TSR1-TAP	W303 MATa rio2:: HIS3MX4 [pRS316-RIO2-GFP] TSR1-TAP::HIS3MX4	this study
Sltv1 TSR1-TAP	W303 MATa TSR1-TAP::HIS3MX4 Itv1::hphNT1	this study
BY4742	MATa, his3 ${ }^{\text {a }}$, leu2 20 , lys2 20 , ura3 30	9
PJ69-4A	trp1-901 leu2-3, 112 ura3-52 his3-200 gal44 gal804 LYS2:: GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ	10

Supplementary Table 3. Plasmids

Name	relevant information	source
YCplac111	CEN, LEU2	11
pRS316-RIO2-GFP	CEN, LEU2, PRIO2, TRIO2	12
pRS315-RIO2	CEN, LEU2, PRIO2, TRIO2	12
pRS315-rio2.D253A	CEN, LEU2, PRIO2, TRIO2	13
pRS314-RIO2	CEN, LEU2, PRIO2, TRIO2	this study
pRS314-rio2.D253A	CEN, LEU2, PRIO2, TRIO2	this study
YCplac111-LTV1	CEN, LEU2, PLTV1, TADH1	8
YCplac111-Itv1.S336/S339/S342>A	CEN, LEU2, PLTV1, TADH1	8
YCplac22-LTV1	CEN, TRP1, PLTV1, TADH1	this study
YCplac22-Itv1.S336/S339/S342>A	CEN, TRP1, PLTV1, TADH1	this study
YCplac111-Itv1.NES3A-(GA)5-yEGFP	CEN, LEU2, PLTV1, TADH1	this study

$\left.\begin{array}{|l|l|l|}\hline \text { pHT44674-RPS3 } & \text { CEN6 (instable), URA3, ADE3, PRPS3, } \\ \text { TADH1 }\end{array}\right)$ 8

rps20.R68/K69>E/D113/E115>A		
YCplac111-HA-RPS20	CEN, LEU2, PRPS20, N-terminal 2xHA, TADH1	this study
YCplac111-HA-rps20.D113/E115>K	CEN, LEU2, PRPS20, N-terminal 2xHA, TADH1	this study
YCplac111-HA-rps20.R68/K69>E	$\begin{aligned} & \text { CEN, LEU2, PRPS20, N-terminal } 2 \mathrm{xHA} \text {, } \\ & \text { TADH1 } \end{aligned}$	this study
YCplac 111-HA-rps20468-78-GAGA (rps204loop)	CEN, LEU2, PRPS20, N-terminal 2 xHA , TADH1, amino acids 68-78 replaced by GAGA linker	this study
pGAG4BDC112-HRR25 *	2μ, TRP1, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4BD	this study
pGAG4BDC22-ENP1 *	CEN, TRP1, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4BD	this study
pGAG4ADC111-ENP1	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	this study
pGAG4ADC111-LTV1 *	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	8
pGAG4ADC111-RIO2	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	this study
pGAG4ADC111-RPS3	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	this study
pGAG4ADC111-RPS10B	CEN, LEU2, PADH1, TADH1, C-terminal (GA) $)_{5}$ G4AD	this study
pGAG4ADC111-RPS12	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	this study
pGAG4ADC111-RPS15	CEN, LEU2, PADH1, TADH1, C-terminal (GA) ${ }_{5}$-G4AD	this study
pADH195-ENP1	2μ, URA3, PADH1, TADH1	this study
P denotes the promotor, T the terminator; * for simplicity, only the yeast two-hybrid (Y2H) plasmids containing the respective wild-type genes are listed. The mutant and deletion variants thereof used in the Y 2 H were cloned into the listed plasmids.		

SUPPLEMENTARY REFERENCES

1. Kucukelbir, A., Sigworth, F. J. \& Tagare, H. D. Quantifying the local resolution of cryoEM density maps. Nat. Methods 11, 63-65 (2014).
2. LaRonde-LeBlanc, N., Guszczynski, T., Copeland, T. \& Wlodawer, A. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes. FEBS J. 272, 2800-2810 (2005).
3. Ameismeier, M., Cheng, J., Berninghausen, O. \& Beckmann, R. Visualizing late states of human 40S ribosomal subunit maturation. Nature 558, 249-253 (2018).
4. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at $3.0 \AA$ resolution. Science 334, 1524-1529 (2011).
5. Scaiola, A. et al. Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J. 37, (2018).
6. Ye, Q., Ur, S. N., Su, T. Y. \& Corbett, K. D. Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator. EMBO J. 35, 21392151 (2016).
7. Thomas, B. J. \& Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619-630 (1989).
8. Mitterer, V. et al. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat. Commun. 7, 10336 (2016).
9. Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast Chichester Engl. 14, 115-132 (1998).
10. James, P., Halladay, J. \& Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436 (1996).
11. Gietz, R. D. \& Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527-534 (1988).
12. Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. \& Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370-1380 (2003).
13. Ferreira-Cerca, S. et al. ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1316-1323 (2012).
