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Abstract 

 

Diamond-Blackfan anemia (DBA) is a rare congenital erythroblastopenia and inherited bone 

marrow failure syndrome that affects approximately seven individuals in every million live births. 

In addition to anemia, about 50% of all DBA patients suffer from various physical malformations 

of the face, hands, heart, or urogenital region. The disorder is almost exclusively driven by 

haploinsufficient mutations in one of several ribosomal protein (RP) genes, although for ~30% of 

diagnosed patients no mutation is found in any of the known DBA-linked genes. Because DBA 

is such a rare disease with a particularly wide range of clinical phenotypes and molecular 

signatures, the development of collaborative efforts such as the ERARE-funded European DBA 

consortium (EuroDBA) has become imperative for DBA research. EuroDBA was founded in 

2012 and brings together dedicated clinical and biological researchers of DBA from France, 

Italy, the Netherlands, Germany, Israel, Poland, and Turkey to achieve a number of goals 

including the consolidation of data in patient registries, establishment of minimal diagnostic 

criteria, and projects aimed at more fully describing the different mutations linked to DBA. This 

review will cover the history of the EuroDBA registries, the methods used by EuroDBA in the 

diagnosis of DBA, and how the consortium has successfully worked together towards the 

discovery of new DBA-linked genes and the better understanding their pathophysiological 

effects.   

 

Keywords: Diamond-Blackfan anemia; ribosomal protein genes; ribosome biogenesis; pre-

rRNA processing; polysome profiling  
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Introduction 

 

Diamond Blackfan Anemia (DBA, OMIM #105650) is a rare congenital erythroblastopenia that is 

clinically and genetically very heterogeneous.1 It represents part of a group of rare genetic 

disorders known as the inherited bone marrow failure syndromes (IBMFS),2 and is characterized 

as a pure red cell aplasia that is also linked to physical malformations.3 Because nearly all the 

genetic lesions driving DBA to date have been found in ribosomal protein (RP) genes, DBA is 

considered a “ribosomopathy”.4 This term is applied to disorders in which the pathogenic 

mutation results in defective ribosome biogenesis and/or the ability of ribosomes to properly 

translate mRNAs into protein. 

 

The first description of DBA appears in a 1936 issue of Medicine in a chapter titled, “Anaemia of 

Infancy and Early Childhood” written by Hugh W. Joseph.5 However, the recognition of DBA as 

a specific clinical entity is attributed to the American pediatricians Louis Diamond and Kenneth 

Blackfan, who published a paper describing it in 1938.6 In its classical form, DBA affects 

approximately seven per one million live births and is characterized by a clinical presentation 

within the first year of life, macrocytic anemia with reticulocytopenia and a normocellular bone 

marrow with a paucity of erythroid precursors.7 However, in recent years and by increasing the 

disease awareness more patients with atypical DBA manifesting later in life (or previously 

misdiagnosed) are referred to specialized DBA clinics. Physical malformations occur in roughly 

50% of patients and include (among others) craniofacial and thumb deformities, short stature, 

cardiac and urogenital malformations.8 Neurological or cognitive problems are very rare in DBA. 

DBA patients generally exhibit increased levels of fetal hemoglobin and the activity of 

erythrocyte adenosine deaminase (eADA) is elevated in 80-85% of all patients.9; 10  The risk of 

DBA patients developing cancer is higher than normal, although the risk does not appear to be 
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as high as with other inherited bone marrow failures such as Fanconi anemia, Shwachman-

Diamond syndrome, or dyskeratosis congenita.11; 12   

 

Genetics of DBA 

 

The DBA genotype, similar to the phenotype, is highly heterogeneous. The vast majority of 

allelic variations in DBA genes are mostly sporadic or de novo (55% of cases) and familial in the 

remaining 45%. In several instances of patients inheriting the mutation from a parent, the parent 

will not show any overt phenotype and are considered “silent carriers”. Silent carriers may also 

exhibit only a macrocytosis without anemia and/or an elevated eADA. The first DBA-linked gene 

to be identified was RPS19 in 1999.13 Subsequent to this initial finding, the identification of other 

mutations were revealed in RPS24, RPS17, RPL5, RPL11, RPS10, and RPS26.14-17 Many other 

mutations in RP genes have been identified within the last ten years and today the list includes 

RPS7, RPS10, RPS15A, RPS17, RPS19, RPS24, RPS26, RPS27, RPS28, RPS29; RPL5, 

RPL9 (in review), RPL11, RPL15, RPL18, RPL26, RPL27, RPL31, RPL35, and RPL35A.18-25 

This list represents 20 of the 80 functional RP genes in humans.  

 

Based on published observations (and unpublished observations of EuroDBA partners) it can be 

noted that the majority (>90%) of mutations fall in only 6 genes (RPS19, RPL5, RPS26, RPL11, 

RPL35A, and RPS24), while all other genes (such as RPS29, RPS17, RPS7, RPS10, RPL15, 

RPL9 and others) are mutated only in very few DBA patients worldwide and account for less 

than 10% of all mutated cases. There is little doubt that more RP or ribosome-associated genes 

will be identified in DBA patients in the near future. 

 

All the RP gene mutations identified in DBA patients to date are heterozygous. Homozygosity is 

largely suspected to be lethal, a suspicion supported by the lethality of homozygous RP gene 
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mutations in several animal models including zebrafish and mice 26; 27. A wide range of mutation 

types is evident and at least in some cases appears to depend on the particular RP gene. Most 

of the missense mutations have been identified in the RPS19 gene while predominantly 

nonsense mutations, small deletions or insertions, and splice site mutations are found in RPL5 

and RPL11.16; 28 Partial- and whole-gene deletions have been detected (depending on the study 

cohort) in 10-20% of DBA patients using various copy-number methods (quantitative PCR, 

multiplex sequencing [MLPA], CGH and SNP arrays), mostly in RPS17, RPL35A, and RPS19 

genes.29-31 

 

While DBA is considered almost exclusively linked to RP gene mutations, two non-RP genes 

have been reported in patients including GATA1 and TSR2.32-34 35 The TSR2 gene is related to 

ribosome biogenesis since it is involved in pre-rRNA processing and binds to eS26 (RPS26) 

protein. GATA1 gene encodes for the major erythroid transcription factor GATA1 and is not 

reported to be involved in ribosome biogenesis. 

 

In a substantial number of patients (approximately 30%) the underlying genetic defects remain 

unknown despite the routine screening of the known RP genes linked to DBA. However, with 

the increasing availability and diagnostic role of next generation sequencing methods, including 

multiplex gene sequencing and whole exome sequencing (WES), novel genetic defects are 

being slowly but steadily identified.36  

 

History of European DBA Registries 

 

The rarity of diseases like DBA makes it difficult for one institute or clinician to become the 

centralized point of patient care. This difficulty exacerbates collecting the already sparse amount 

of clinical and biological data and using them to generate meaningful genotype:phenotype 
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correlations. Thus the key to success when it comes to understanding and ultimately defeating 

DBA, or any other rare disease, is collaboration. Although national and international 

collaborations can be challenging, extraordinary progress has been made in developing, 

funding, and maintaining groups of clinical and biological researchers who share the same goal: 

To better understand and ultimately cure a specific rare disease such as DBA. 

 

DBA networks preceded the creation of formal patient registries in Europe. The pioneering 

group in 1995 included clinicians from France, Germany, Italy, England, Sweden, and 

Switzerland under the umbrella of the European Society for Pediatric Haematology and 

Immunology (ESPHI) and the Société d’Hématologie et d’Immunologie Pédiatrique (SHIP). 

Their goals were simple and straightforward: To share DBA clinical data and samples, to build 

registries, and to test new drugs.37-41 By working together this group shared a major 

achievement in 1999 with the discovery RPS19 as the first known DBA-linked gene.13 This 

gene, RPS19, still today remains the most commonly mutated gene found in ~25% of DBA 

patients and as such is routinely the first gene candidate sequenced when genotyping a patient. 

 

The first observational DBA patient registries were initiated in the Czech Republic in 1988 and 

officially announced in 1992.42 This was shortly followed by registries in the USA (DBAR, 

1993),42; 43 Germany (1993), France (1995) and Italy (1995). The Italian registry is maintained as 

an online registry freely accessible to clinicians.44 In a similar strive to create greater 

transparency and openness the Italian group developed the publically available online RP gene 

database including mutational data from countries worldwide in 2008 

(http://www.dbagenes.unito.it). This registry regularly updates DBA mutation data and remains 

the standard go-to database when researchers are querying the novelty of recently identified 

mutations in their patients.45  

 

http://www.dbagenes.unito.it/
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While the registries mentioned above contain the majority of European DBA patients due to the 

size of the host country’s population, it is not necessary for a country to be highly populated in 

order to establish a meaningful registry. This is illustrated by the Israeli registry, which was 

founded in 2007.46 Although Israel has a relatively low population, the respective registry 

contains virtually all known DBA patients in the country. This allows the registry data to be used 

for very precise statistical measurements of disease and phenotype frequencies that are far 

more difficult in larger countries. Another example is the incipient Dutch DBA registry, which 

was founded this year (in review). The fact that there are a limited number of clinics in close 

proximity that treat DBA patients in the Netherlands resulted in the establishment of a 

substantially sized registry in a very brief period of time.  

 

In contrast, the initiation of patient registries in large or heavily populated countries can seem 

like a daunting task. This is especially true in countries that may not have access to or funding 

for state-of-the-art molecular diagnostics. An example of this is Poland, before it became a 

EuroDBA member in 2016. From 1998-2016 genotyping of Polish patients had been performed 

in collaboration with Boston Children’s Hospital, which contributed to the discovery of RPL5, 

RPL11, RPS10, and RPS26 as DBA-linked genes.16; 17 Another example is Turkey. An 

estimated 100 patients were diagnosed with DBA in the various hematology clinics around the 

country. However, there was no centralized point of care until 2014 with the development of the 

Inherited Bone Marrow Failure Center at Hacettepe University in Ankara. Today, both Turkey 

and Poland are members of EuroDBA and have the necessary funding required to build their 

own patient registries and systematically genotype their own patients. 

 

The establishment of these patient registries represents a crucial step in creating a global DBA 

network. Beyond Europe, many other countries around the world have in recent years 

successfully established their own DBA patient registries (Table 1). The populations of countries 
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initiating these registries range from over a billion (China) to fewer than 3 million (Lithuania). 

Thus the size and population density of any given country should not be considered a deterrent 

when deciding to establish a patient registry for a rare disease.   

 

History of the European DBA Consortium 

 

In 2012, the European Union’s ERA-Net for Research Programs on Rare Diseases (ERARE) 

issued a transnational call specifically for Young Researchers. This call led to the founding and 

successful funding of the European Diamond-Blackfan Anemia consortium, EuroDBA. The 

original EuroDBA members were clinician scientists who were organizers of the two largest DBA 

patient registries in Europe at the time (Germany and in France) together with a biological 

researcher from the Netherlands. This consortium was initiated with three major goals. One was 

to identify and characterize novel genetic lesions in the registered patients who did not have a 

mutation in any of the known DBA-linked genes. The second was to fully clarify and disseminate 

up-to-date clinical treatments and guidelines for patient care. The third was to develop 

molecular and cellular methods, including the use of zebrafish models and patient cell lines, to 

more fully understand the pathophysiology of DBA.  

 

The EuroDBA network over the next years expanded to include as associated partners other 

European countries that hosted DBA patient registries, such as Poland, Czech Republic, Italy, 

Spain, and Israel. In 2015 the funding for EuroDBA was renewed and the consortium was able 

to formally include many of the aforementioned countries. Moreover, the renewal allowed for the 

inclusion of the clinical groups in Poland, Turkey, as well as another group of biological 

researchers in France with expertise in pre-rRNA processing and how it is impaired by RP gene 

mutations.  
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Initial DBA Diagnostics 

 

Patients typically present at the clinic with the basic hallmarks of anemia including pale pallor 

and failure to thrive. After collecting the familial history of the patient, the first test is typically a 

blood smear and blood cell count. DBA may be suspected if hemoglobin (Hb) is low, with absent 

or low reticulocyte numbers and often a macrocytosis (which is age-adjusted). Fetal Hb might 

also be increased, however this is an unspecific marker that is also elevated in other bone 

marrow disease states. Most groups include a supportive eADA analysis in EDTA blood prior to 

transfusion. This DBA-specific marker is elevated in 80-90% of DBA patients. A high 

erythropoietin level may help with the diagnosis, reflecting the intrinsic defect of bone marrow in 

DBA patients. A positive family history for anemia, and/or syndromic features (present in at least 

50% of DBA patients) is also indicative of DBA. Bone marrow aspiration is performed to 

determine the content of erythroblasts, which in DBA are typically low (below 5%). In cases of 

late-onset DBA (or delayed diagnosis) e.g. in adolescents or adults, marrow might display 

hypocellularity with dysplasias and megaloblastic changes resembling low grade MDS or 5q- 

syndrome. During the initial workup, other differential diagnoses should be considered. These 

include parvovirus B19-associated pure red cell aplasia (identified by PCR analysis of bone 

marrow samples), which although rare and might present with additional pancytopenia. Other 

differential diagnosis is transient erythroblastopenia (TEC), which however usually manifests 

beyond the first year of age (and patients show normal MCV, eADA and HbF values). Unlike 

DBA, both parvovirus B19 infection and TEC are neither associated with positive family history 

nor with congenital anomalies. Sometimes, in unclear cases, clinicians might want to rule out 

other IBMFS such as Fanconi anemia or SDS. The steps that the different clinical partners of 

EuroDBA undertake in this initial non-genetic workup are shown in Table 2. 
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Molecular DBA Diagnostics  

 

Because the RPS19 gene is by far the most frequently mutated gene in DBA (25% of cases), 

most screening analysis begins with targeted Sanger sequencing of RPS19 (Table 2). This 

approach uses PCR amplification and sequencing of each RP gene exon and promoter region 

by specific forward and reverse primers in both directions. The subsequent genetic diagnostics 

does not fit a “one for all” approach to identify mutations, intra-exonic, full exon or whole gene 

deletions. Based on the availability of routine and sophisticated genomic methods, different 

approaches were developed in different countries (Table 2). The first goal is to identify the most 

common genetic defects using routinely available methods such as Sanger sequencing or CGH 

array. Next generation sequencing (either targeted, or whole exome) might not yet be 

accessible to all laboratories, however recent developments in clinical diagnostics will likely lead 

to routine use of NGS instead of Sanger sequencing. Additional novel non-genetic techniques 

have been developed that reduce the time and cost of the molecular diagnosis of DBA. 

 

One newly developed method takes advantage of the fact that rRNA in cells with small RP 

mutations typically reveals an increased 28S/18S ratio, while rRNA in cells with large RP 

mutation reveals a decreased 28S/18S ratio.21 To read these ratios, a Bioanalyzer can be used 

to read rRNA levels. Ethidium bromide gels are also used to visualize if a visible 32S band 

exists, which is typically indicative of an RPL gene mutation. EBV-immortalized cells (if 

available) can be used for this technique, or T cells isolated from patient blood and 

subsequently activated with phytohemagglutinin. This method, used in Italy, can rapidly 

determine the presence of large or small ribosomal subunit defect. Such results can be helpful 

in deciding which common candidate DBA genes should then be sequenced by Sanger. 
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Since the routine use of next generation sequencing, many samples can be investigated for the 

presence of mutations in multiple RP genes at once (along with any others such as GATA1 and 

TSR2). This approach was developed within the French group of EuroDBA, and serves as a 

standard platform for other consortia members. The approach uses Roche “NimbleGen SeqCap 

EZ” library and an Illumina flowcell (Flowcell standard 2*150) with a library of 144 genes 

including 74 genes for red cell disorders. The sequences are run on a Miseq or a Nextseq, 

analyzed on a CLC Biomedical workbench (Qiagen), and the allelic variations are then verified 

by Sanger technique. Other approaches (e.g. initiated in Germany and Turkey) include 

sequencing of the few most commonly mutated RP genes using Sanger sequencing, rapidly 

followed by commercial exome sequencing in case of negative results.  

 

In case of a negative mutational result, large deletions are screened either by RP-specific MLPA 

such as in Italy or by high-resolution CGH array such as in Germany, France, and Israel. New 

bioinformatics algorithms allow for the use of whole exome data to compile copy number maps 

that can also identify microdeletions encompassing RP genes. Commercial probes and kits 

need to be verified before use since the probes might not sufficiently cover most of the RP 

genes. The percentage of DBA patients with unknown genetic cause is similar in all registries 

and can be estimated at approximately 30%. If an RP mutation or other deleterious mutation 

has not been found, exome sequencing should be performed. Ideally, this requires the 

availability of trios (both biological parents and the patient) to reduce as much as possible the 

number of variants of unknown significance that exome sequencing unfailingly reveals. 

Consanguinity is a very rare facet of DBA inheritance, and the search for novel gene mutations 

in children of consanguineous marriages usually focuses on monoallelic alterations. In index 

patients who are the only affected family members, the analysis naturally targets potentially 

pathogenic de novo variants, which however will exclude the scenario of novel mutations 

associated with silent carrier status in the parents. After exome sequencing studies, many (if not 
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the majority, according to unpublished observations from the French and German DBA 

registries) may still have unresolved genotypes. It is possible that such patients may carry 

mutations in promoter/enhancer or deep intronic regions or RP or other erythropoiesis-specific 

genes, other structural genomic anomalies might be present, or multi-genetic causes underlie 

disease manifestation. Most patients analyzed using exome sequencing will carry multiple 

potentially pathogenic variants of unknown significance, requiring lengthy molecular and cellular 

analysis to be performed before any conclusions can be drawn.  

 

DBA genotypes and phenotypes 

 

As the number of registered patients grows the more readily researchers are able to identify and 

characterize DBA clinical and cellular phenotypes in a way that would be impossible with small 

patient cohorts. Reported correlations between clinical phenotypes and mutations in specific RP 

genes include RPL5 mutations associated with physical malformations such abnormal thumbs, 

craniofacial and cardiac defects. RPL11 mutations are reported to associate with thumb 

abnormalities and mutations in RPS26 with skeletal defects.18; 42 The EuroDBA network recently 

identified a group of unrelated patients with truncating RPL15 mutations who all presented with 

very severe and early onset of anemia (hydrops fetalis in most cases). Even more remarkable 

was that within this group, the patients carrying the same point mutation in RPL15 all became 

treatment independent (in revision). Although it is widely known that between 20-25% of DBA 

become treatment-independent at some point during their lives, this is the first indication of a 

genetic association with this clinical phenomenon. The challenge of drawing meaningful 

genotype:phenotype correlations is present in any rare disease patient cohort, and is especially 

true with DBA where often there are fewer than five reported patients with a mutation in the 

same RP gene. However, with the increasing cooperation of clinics with DBA patient registries, 

such as those within the EuroDBA network, the challenge is no longer insurmountable. 



 13 

 

One surprising feature of RP gene mutations is that by no means are all RPs equal, despite 

their past reputation as “housekeeping genes”. In addition to driving DBA, haploinsufficient 

mutations of RP genes are starting to be reported in non-hematopoietic congenital disorders. 

Disorders such as intellectual disability, autism, asplenia, dysmorphism, and hereditary 

nonpolyposis colorectal carcinoma are linked to inherited RP gene mutations in patients who 

have no evidence of anemia.47-51 Additionally there are a number of parents who carry the same 

RP mutation as their DBA-afflicted child yet have no clinical features at all, known as “silent 

carriers”. Although the reasons behind these differences are not well understood, there do seem 

to be some similarities in terms of the molecular consequences. For examples, in contrast with 

the asplenia-driving RP mutations, the DBA-driving RP mutations in every case studied to date 

result in ribosome biogenesis defects, including impaired pre-rRNA processing and abnormal 

ribosomal subunit formation.52; 53 52; 54  

 

The defects in ribosome biogenesis by RP gene mutations have been proposed to activate the 

TP53 tumor suppressor pathway by inducing stress in the nucleolus, the cellular organelle 

where ribosome biogenesis originates. 55 However, one of the great puzzles of DBA is why, if 

RPs are expressed in every cell in the body, are erythrocytes so specifically affected when one 

copy of an RP gene is mutated? The specificity of the defects to erythroid cells has not been 

satisfactorily explained, although theories ranging from hypersensitivity of erythroblasts to 

elevated TP53 levels, a high protein demand in rapidly dividing erythroblasts, cell-specific 

translation and splicing defects and the induction of autophagy have also been proposed as 

mechanisms that result in the reduction of erythrocyte progenitor cells.4; 55-61  

 

The collaboration between the clinical and biological researchers has allowed for advancement 

in the pathophysiology studies of DBA that would be next to impossible for any one group to 
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achieve alone. EuroDBA routinely provides examples of this level of cooperation. In one 

instance, a study published by the consortium demonstrated that DBA-linked RP gene 

mutations induce cellular autophagy. Here the German EuroDBA group generated EBV-

immortalized lymphoblast cell lines (LCLs) from patients in their registry that were then analyzed 

by the EuroDBA group of biological researchers in the Netherlands, who were performing the 

same molecular analyses on their zebrafish models of RP loss using either mutants (if available) 

or knocking down the RP of interest transiently with morpholinos. Simultaneously, the EuroDBA 

group in France performed red cell culture assays with erythroblasts infected with shRNAs to 

knock down RPS19, the resulting colonies being sent to the Netherlands for the same cellular 

analysis as was being used for the patient-derived LCLs and the zebrafish (see Figure 1).59 

 

Another example of the consortium’s capacity to cooperate on unraveling the pathophysiology 

of DBA began with the identification of a patient in the Netherlands whose exome sequence 

revealed a mutation in RPL9, a gene not previously linked to DBA. A blood sample from this 

patient was sent to the German EuroDBA partners for establishment of LCLs, a second blood 

sample was sent to the French EuroDBA partners who performed a red cell culture assay on 

isolated erythroblasts. The LCLs were subsequently sent to the biological EuroDBA partners in 

France who performed pre-rRNA analysis, and to the partners in the Netherlands who 

performed other cellular analyses including polysome profiles, TP53 analysis, proliferation and 

de novo protein synthesis measurements. The resulting colonies from the red cell culture 

assays were also analyzed for proliferation and differentiation defects as well as for TP53 

analysis. Analysis of the Netherlands group into zebrafish models of rpl9 loss confirmed the 

impairment of red cell development in mutant embryos. Taken all together, the EuroDBA 

consortium was able to determine that RPL9 is a bona fide DBA gene in a swift and systematic 

manner that would have otherwise been laborious and time-consuming (in submisison). 
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Functional validation of DBA mutations 

 

The functional validation of DBA-linked RP gene mutations may be achieved by analyzing the 

maturation of ribosomal RNA precursors by northern blot.16; 17; 20; 21; 23; 29; 52; 62; 63 Mutations in 

DBA-linked RP genes invariably lead to haploinsufficiency of the corresponding protein. Since 

most ribosomal proteins are progressively incorporated into pre-ribosomal particles 

concomitantly to pre-ribosomal RNA maturation, lack of a given RP impairs processing of pre-

ribosomal precursors (pre-rRNAs) in a specific manner.64 Modifications of the pre-rRNA pattern 

can thus be visualized by northern blot and used as a “molecular signature” for the defect of this 

RP. This characteristic pre-rRNA pattern can be determined by northern blot analysis of RNAs 

extracted from a patient's cells in order to validate the functional impact of a mutation. In case of 

a mutation in a new RP gene suspected to be pathogenic, the patient pre-rRNA profile is 

compared to that obtained after knocking down expression of the corresponding ribosomal 

protein with siRNAs in a cell line (see Figure 1A). Control samples from unrelated individuals, 

and/or unaffected parents or siblings are used for comparison. Because ribosome processing is 

affected ubiquitously in DBA patient cells, a variety of cell types can be used to prepare total 

RNAs including peripheral blood lymphocytes, LCLs, or fibroblasts. This technique is also useful 

to examine whether ribosome biogenesis is affected in patients for whom sequencing failed to 

reveal any mutation/deletion among the known DBA genes.  

 

A complementary approach consists of analyzing ribosomes from cytoplasmic fractions on 

sucrose gradients. By providing the relative abundance of small and large ribosomal subunits 

and the distribution of polysomes (translating ribosomes), this technique reveals to which extent 

a RP defect not only impairs either pathway, but also impacts translation. Figure 1 provides an 

example of coupling these techniques for a DBA patient from the EuroDBA registry, for whom 

no RP gene defect was found by sequencing. Figure 1A reveals a clear ribosome biogenesis 
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dysfunction in patient LCLs, with an accumulation of both 30S and 32S pre-rRNAs (precursors 

to rRNA constitutive of the small and the large ribosomal subunits, respectively). Quantifications 

of product to precursor ratios relative to the controls further ascertained these findings (Figure 

1A), which strongly support the diagnosis of DBA despite the lack of a candidate gene. Figure 

1B illustrates how polysome profiling revealed a substantial loss of 60S subunits in the patient 

LCLs compared to the healthy control cells, suggesting a defective RP from the large ribosomal 

subunit. Figure 1C illustrates the results of a typical o-dianisidine stain of 2-day old zebrafish 

embryos. In these experiments a mutant zebrafish line is used, if available, or morpholinos 

(MOs) that target the gene of interest are injected into the embryos at the one-cell stage. The o-

dianisidine stain at 2 days of age reveals hemoglobin-expressing red blood cells (Figure 1C, 

upper), which are clearly absent in the embryos injected with the MOs targeting an RP gene 

(Figure 1C, lower). As a final validation that patient CD34+ cells are impaired in forming 

erythrocytes, a red cell culture assay is performed (Figure 1D). Here blood is drawn from the 

patient, CD34+ cells are isolated and plated in red cell culture medium containing erythropoietin 

(EPO), stem cell factor (SCF), and interleukin-3 (IL3). After 12 days in culture the cells are 

analyzed for colony formation, cell surface determinant markers of differentiation by FACS 

analysis, protein expression by western blotting, and/or gene expression by qPCR. 

 

So far, northern blot analysis remains the method of choice to validate new DBA mutations or to 

support diagnosis of DBA. However, it is labor-intensive and not easily transposable in clinics 

due to the use of radiolabeled probes. Various commercial solutions using capillary 

electrophoresis (e.g. Agilent BioAnalyzer, Biorad Experion) exist to quantify 18S and 28S rRNAs 

that compose respectively the backbones of the small and the large ribosomal subunits. This 

straightforward technique can be used to detect biases in the 28S/18S rRNA ratio in DBA 

patient cells and determine which of the two ribosomal subunits is affected.54 This is best 

observed in RNAs extracted from peripheral blood lymphocytes (PBMCs) subjected to activation 
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by phytohemagglutinin. Although this technique is not sensitive enough to see the vast majority 

of rRNA precursors, it allows detection of an increase of 32S pre-rRNAs when the large subunit 

production is impaired. Assessment of the 18S/18S ratio is now routinely used by the Italian 

members of the consortium prior to Sanger sequencing in order to determine which of the small 

or the large subunit pathway is affected, and to prioritize the RP genes to be sequenced. In 

future years, sensitive analytical approaches adapted to pre-ribosomal precursor analyses need 

to be adapted to clinical environments, in order to routinely validate ribosome biogenesis 

defects and help diagnosis of DBA. 

 

Improving treatment and aiming for a cure 

 

The registering of DBA patients, systematic genotyping, and the continued efforts in the 

laboratory have already been invaluable for establishing important genotype:phenotype 

relationships such as those discussed above. The molecular signatures of the different RP gene 

mutations are already beginning to be used to improve diagnostics. The continuing inclusion of 

more clinical and genetic data in patient registries means at this rate it won’t be long before the 

results may be translated into meaningful patient management protocols. The hope is that in the 

future a patient’s genetic information will be able to single-handedly predict, for example, a 

successful steroid treatment, the susceptibility to iron overload upon chronic blood transfusions, 

the likelihood of undergoing treatment independence one day, or the likelihood of developing 

cancer.  

 

The other more obvious hope for the future of any rare disease is a cure. In terms of current 

treatment for DBA, steroids and blood transfusions can keep the disease at bay but these 

approaches have considerable side effects. This is especially true for chronic blood 

transfusions, which can lead to iron overload and organ failure.  The only present day cure for 
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DBA is hematopoietic stem cell transplantation (HSCT), which can be a risky procedure 

especially if a matched sibling donor is not available. To date there are no pharmaceutical 

option for DBA patients. 

 

As a monogenic blood disorder that can be cured by HSCT, one of the most exciting areas of 

future therapy for DBA is gene editing. CRISPR/Cas9 gene therapy, for example, holds great 

promise for the correction of point mutations and small indels in patient cells. For a complete 

review of how CRISPR/Cas9 functions, see reference.65 In short, this technique harnesses the 

cell’s own machinery to target specific sequences of DNA and generate small deletions which 

the cell then tries to repair. Introducing an exogenous template for this DNA repair theoretically 

allows the user to reintroduce a wild-type gene sequence at the exact position where the 

deletion was introduced, ideally at the exact site of the endogenous mutation. The beauty of this 

system is that it theoretically allows for any accessible patient cell type, such as fibroblasts, 

bladder epithelial cells, or blood-derived CD34+ cells, to be first corrected in vitro then 

dedifferentiated into HSCs that could be used for HSCT. Alternately, HSCs could first be 

generated with one of the patients’ cell types mentioned above, then the HSCs get corrected by 

CRSIPR/Cas9. The downside of this technique at the present day is that while CRISPR/Cas9 is 

indeed very efficient at generating deletions at or very near the user-specified DNA sequence, 

generating the exact desired sequence by introducing an exogenous template of wild-type DNA 

remains technically extremely challenging.  

 

Instead of correcting a mutant gene, another approach uses CRISPR/Cas9 to direct integration 

of a new wild type gene.  The “Safe Harbor” approach uses the CRISPR/Cas9 system to 

introduce an exogenous gene specifically into the AAVS1 locus on the long arm of human 

chromosome 19.66 Many reports have demonstrated high specificity of this integration site for 

the successful expression of minigenes with no adverse recombination events or fitness 
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reduction.67-69 In the context of DBA, this technique has already been used to introduce and 

drive exogenous wild type RPS19 expression in inducible pluripotent stem cells (iPSCs) derived 

from a patient carrying a truncating mutation in one allele of RPS19.70 This approach was able 

to successfully revert the ribosome biogenesis defects of the mutant cells. All this said, it should 

be kept in mind that CRSIPR/Cas9 technology is still very incipient. However when one 

considers its potential for curing monogenic inherited disorders in humans, there is no question 

that this technology will advance quickly in the near future. 

 

 

Discussion 

 

The advent of genome sequencing has resulted in significant advances in rare disease research 

this past decade. While researchers are now more likely than ever able to identify disease-

causing genes, the lack of understanding the pathphysiological mechanisms underlying these 

mutations remains a cumbersome bottleneck in terms of finding a therapeutic cure. In fact, 

according to the Kakkis EveryLife Foundation, 95% of the approximately 7,000 rare diseases 

known today do not have a single approved drug treatment.71 The funding of rare disease 

networks, such as ERARE’s EuroDBA, represents an important step forward in developing the 

foundation that will ultimately loosen this bottleneck and hasten the advance of successful 

treatment methods. 

 

DBA represents a rare disease that has amassed a worldwide network of dedicated researchers 

and patient support groups helping to fund their work. While the genetics underlying DBA are 

now very well studied, the pathophysiology still remains not well elucidated, and as such, the 

treatment options are rather outdated and limited. Some of the major questions that surround 

DBA include why is it that some patients and not others manifest physical malformations? How 
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is it that “silent carriers” have the same pathogenic RP-mutation as their affected child? And 

what are the determinants that can lead to patients undergoing treatment independence, or 

developing cancer? The establishment of cooperative global networks for DBA is a crucial step 

in being able to shed light on the drivers of this rare disease. 
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Figure Legend 

Figure 1. Functional analyses used for informal diagnostics. A) Northern blot analysis of 

LCLs from the same patient as above compared with two healthy controls lines (Ctl1 and Ctl2) 

reveals multiple pre-rRNA processing defects that are not consistent with known RPL mutations. 

Includes quantification by Ratio Analysis of Multiple Precursors (RAMP20). B) Polysomes 

profiles of healthy control LCLs (upper) show equal 40S and 60S ribosome subunit peaks while 

the profile from a patient diagnosed with DBA (lower, with no mutations in known DBA-linked 

RP genes) reveals a severe reduction of the 60S peak, consistent with an impairment of 

biogenesis of the large ribosomal subunit. C) 2-day old zebrafish embryos injected at the one-

cell stage with control MOs or MOs targetting a RP gene and then stained with o-dianisidine to 

reveal hemaglobin-expressing red blood cells (arrow). D) Red cell culture assays plate CD34+ 

cells derived from patients and helathy controls and plated in liquid culture medium (+EPO, 

SCF, IL3) for 12 days. 
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Table 1. Numbers of DBA patients reported in countries worldwide. Patient numbers were 

retrieved from recent literature, personal communications, and presentations from the 2014 

DBA Global Bridges Meeting. Population numbers were retrieved from 

http://www.worldometers.info/world-population/ on the 18th of May 2017.  = Formal registry in 

progress. DBAR = Diamond Blackfan Anemia Registry of North America. *DBAR is loosely 

affiliated with  Canada, Australia, and Mexico. 

  

Geographical Location Population (in 
millions) 

Number of 
Patients 

Formal 
Registry  

Europe, EuroDBA 
members 

   

Germany/Austria/Switzerland 80.6/8.6/8.5 330/20/30  

France 64.9 356  

Italy 59.8 239  

The Netherlands 17 44  

Israel 8.3 38  

Poland 38.6 36  

Turkey 80.4 65  

Europe, other    
Czech Republic 10.6 61  

Greece 10.9 17  

United Kingdom 65.5 104  

Lithuania 2.8 4  
Denmark 5.7 17  
Sweden 9.9 40  
Norway 5.3 22  
Finland 5.5 10  
Spain 46.1 45  
Internationally reported 
cohorts 

   

United States (DBAR) 326.2 750  

Egypt 95.2 22  
China 1400 104  
South Korea 50.7 60  
Japan 126 68  
Russia 143.4 90  
Iran 80.3 30  
Saudi Arabia 32.3 30  

 
 
 

Table 1

http://www.worldometers.info/world-population/
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Table 2. A description of the routine and molecular steps taken by different EuroDBA 

partners in the diagnosis of DBA. a tested in EDTA-blood prior initial transfusion or at least 4-

6 weeks after last transfusion. *Testing performed not routinely but rather in cases with atypical 

presentation. ‡ Genes sequenced only when following scenarios are met: GATA1, RP-genes are 

negative and the proband is male; TSR2: RP-genes are negative and the patient has typical 

facial anomalies. Abbreviations: HbF, fetal hemoglobin; eADA, erythrocyte adenosine 

deaminase; BM bone marrow; IBMFS, inherited bone marrow failure syndromes such as 

Fanconi anemia and Shwachman-Diamond syndrome; Sanger, Sanger-based sequencing; RP, 

ribosomal protein; CGH, comparative genomic hybridization; SNP, single nucleotide 

polymorphism; MLPA, multiplex ligation-dependent probe amplification. DE = Germany, FR = 

France (Paris), IL = Israel, IT = Italy, PL = Poland, TR = Turkey. 
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