176 research outputs found

    La question de l'Escaut de 1648 à 1930

    Get PDF

    The detection of ultra-relativistic electrons in low Earth orbit

    Get PDF
    Aims. To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods. We present an analysis of energetic particles, indirectly detected by the Large Yield RAdiometer (LYRA) instrument on board ESA's Project for On-board Autonomy 2 (PROBA2) satellite as background signal. Combining Energetic Particle Telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results. The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L=4-6 McIlwain zone, which makes it possible to identify their source. Conclusions. Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.Comment: Topical Issue: Flares, CMEs and SEPs and their space weather impacts; 20 pages; 7 figures; Presented during 13th European Space Weather Week, 201

    The oblique firehose instability in a bi-kappa magnetized plasma

    Get PDF
    In this work, we derive a dispersion equation that describes the excitation of the oblique (or Alfv\'en) firehose instability in a plasma that contains both electron and ion species modelled by bi-kappa velocity distribution functions. The equation is obtained with the assumptions of low-frequency waves and moderate to large values of the parallel (respective to the ambient magnetic field) plasma beta parameter, but it is valid for any direction of propagation and for any value of the particle gyroradius (or Larmor radius). Considering values for the physical parameters typical to those found in the solar wind, some solutions of the dispersion equation, corresponding to the unstable mode, are presented. In order to implement the dispersion solver, several new mathematical properties of the special functions occurring in a kappa plasma are derived and included. The results presented here suggest that the superthermal characteristic of the distribution functions leads to reductions to both the maximum growth rate of the instability and of the spectral range of its occurrence

    Editorial honoring the 2018 reviewers for JGR Space Physics

    Get PDF
    The Editors of the Journal of Geophysical Research Space Physics would like to honor and thank the 2018 manuscript reviewers for the journal. This is a large‐scale, community‐wide effort for which 1,358 scientists submitted 3,027 reviews in 2018. We understand that this is a volunteer task and we greatly appreciate your time and effort to fulfill this service role back to the research community

    Які соціально-економічні наслідки матиме скасування мораторію на продаж земель сільськогосподарського призначення в Україні?

    Get PDF
    This study investigated the long-term effects of total and partial replacement of dietary fish meal (FM) by a mixture of agricultural products on sperm quality of African catfish Clarias gariepinus. Four isonitrogenous and isoenergetic diets were formulated containing graded levels of either 50% FM and maize meal (diet 1); 25% FM mixed with crude sunflower oil cake (SFOC) and bean meal (BM) (diet 2); 12.5% FM mixed with sunflower oil cake, BM and ground nut oil cake (GOC) (diet 3) and 0% FM mixed with de-hulled sunflower oil cake (SFOCD), BM and ground nut oil cake (diet 4). Gonadosomatic index (GSI), sperm quality, plasma sex steroids (11-keto testosterone [11-KT]; testosterone [T]; estradiol-17beta [E2]) were evaluated on 10 to 24 fish fed on each diet. Sperm quality was assessed using computer-assisted sperm analysis (CASA). Total replacement of fish meal by plant products markedly increased sperm volume, spermatocrit, spermatozoa integrity, and sperm motility. Fish fed diet 3 (12.5% fish meal) provided intermediate results on sperm quality whereas the lowest values were obtained in fish fed diets 1 and 2. In fish fed 0% fish meal (diet 4), androgen levels were higher and estrogen levels were lower than in fish fed fish meal diets. Based on dietary lipid and fatty acid analyses, these results suggest a positive impact of short chain n-6 fatty acids on androgen synthesis and sperm quality. In conclusion, a combination of ground nut oil cake, bean meal and sunflower oil cake (preferably when the sunflower is dehulled) in African catfish diet improves the sperm quality

    The relationship between well-being and commuting revisited: does the choice of methodology matter?

    Get PDF
    This paper provides an assessment of a range of alternative estimators for fixed-effects ordered models in the context of estimating the relationship between subjective well-being and commuting behaviour. In contrast to previous papers in the literature we find no evidence that longer commutes are associated with lower levels of subjective well-being, in general. From a methodological point of view our results support earlier findings that linear and ordered fixed-effects models of life satisfaction give similar results. However, we argue that ordered models are more appropriate as they are theoretically preferable, straightforward to implement and lead to easily interpretable results

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Electron-Driven Instabilities in the Solar Wind

    Get PDF
    The electrons are an essential particle species in the solar wind. They often exhibit non-equilibrium features in their velocity distribution function. These include temperature anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute a significant heat flux to the solar wind. If these non-equilibrium features are sufficiently strong, they drive kinetic micro-instabilities. We develop a semi-graphical framework based on the equations of quasi-linear theory to describe electron-driven instabilities in the solar wind. We apply our framework to resonant instabilities driven by temperature anisotropies. These include the electron whistler anisotropy instability and the propagating electron firehose instability. We then describe resonant instabilities driven by reflectional asymmetries in the electron distribution function. These include the electron/ion-acoustic, kinetic Alfvén heat-flux, Langmuir, electron-beam, electron/ion-cyclotron, electron/electron-acoustic, whistler heat-flux, oblique fast-magnetosonic/whistler, lower-hybrid fan, and electron-deficit whistler instability. We briefly comment on non-resonant instabilities driven by electron temperature anisotropies such as the mirror-mode and the non-propagating firehose instability. We conclude our review with a list of open research topics in the field of electron-driven instabilities in the solar wind
    corecore