122 research outputs found

    Traitement des addictions Ă  l'aide du psychodrame

    Get PDF

    The state of OAI-PMH repositories in Canadian Universities

    Full text link
    This article presents a study of the current state of Universities Institutional Repositories (UIRs) in Canada. UIRs are vital to sharing information and documents, mainly Electronic Thesis and Dissertation (ETDs), and theoretically allow anyone, anywhere, to access the documents contained within the repository. Despite calls for consistent and shareable metadata in these repositories, our literature review shows inconsistencies in UIRs, including incorrect use of metadata fields and the omission of crucial information, rendering the systematic analysis of UIR complex. Nonetheless, we collected the data of 57 Canadian UIRs with the aim of analyzing Canadian data and to assess the quality of its UIRs. This was surprisingly difficult due to the lack of information about the UIRs, and we attempt to ease future collection efforts by organizing vital information which are difficult to find, starting from addresses of UIRs. We furthermore present and analyze the main characteristics of the UIRs we managed to collect, using this dataset to create recommendations for future practitioners.Comment: Published at DCMI -- International conference on dublin core and metadata applications, 202

    Extracorporeal life support in severe drug intoxication: a retrospective cohort study of seventeen cases

    Get PDF
    Cardiovascular failure is the leading cause of death in severe acute drug intoxication. In this setting, we report the feasibility, complications, and outcome of emergency extracorporeal life support (ECLS) in refractory shock or cardiac arrest following a drug overdose

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Full text link
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5T = 8.5 mag), high proper motion (∌ 200\sim\,200 mas yr−1^{-1}), low metallicity ([Fe/H]≈ −0.28\approx\,-0.28) K-dwarf with a mass of 0.68±0.050.68\pm0.05 M⊙_{\odot} and a radius of 0.67±0.010.67\pm0.01 R⊙_{\odot}. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70±0.071.70\pm0.07 R⊕_{\oplus} super-Earth in a 3.82 day orbit, placing it directly within the so-called 'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.092.59\pm0.09 R⊕_{\oplus} mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5±0.94.5\pm0.9 M⊕_{\oplus} , while TOI-836 c has a mass of 9.6±2.69.6\pm2.6 M⊕_{\oplus}. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    Overview of the current use of levosimendan in France: a prospective observational cohort study

    Get PDF
    Abstract Background Following the results of randomized controlled trials on levosimendan, French health authorities requested an update of the current use and side-effects of this medication on a national scale. Method The France-LEVO registry was a prospective observational cohort study reflecting the indications, dosing regimens, and side-effects of levosimendan, as well as patient outcomes over a year. Results The patients included ( n = 602) represented 29.6% of the national yearly use of levosimendan in France. They were treated for cardiogenic shock ( n = 250, 41.5%), decompensated heart failure ( n = 127, 21.1%), cardiac surgery-related low cardiac output prophylaxis and/or treatment ( n = 86, 14.3%), and weaning from veno-arterial extracorporeal membrane oxygenation ( n = 82, 13.6%). They received 0.18 ± 0.07 ”g/kg/min levosimendan over 26 ± 8 h. An initial bolus was administered in 45 patients (7.5%), 103 (17.1%) received repeated infusions, and 461 (76.6%) received inotropes and or vasoactive agents concomitantly. Hypotension was reported in 218 patients (36.2%), atrial fibrillation in 85 (14.1%), and serious adverse events in 17 (2.8%). 136 patients (22.6%) died in hospital, and 26 (4.3%) during the 90-day follow-up. Conclusions We observed that levosimendan was used in accordance with recent recommendations by French physicians. Hypotension and atrial fibrillation remained the most frequent side-effects, while serious adverse event potentially attributable to levosimendan were infrequent. The results suggest that this medication was safe and potentially associated with some benefit in the population studied

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    peer reviewe
    • 

    corecore