134 research outputs found
Rapid DNA replication origin licensing protects stem cell pluripotency
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance
LRRK2 secretion in exosomes is regulated by 14-3-3
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trial
A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range
Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)–specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass’ ecological niche and thus putatively represents a valuable breeding resource
Investigating older adults’ preferences for functions within a human-machine interface designed for fully autonomous vehicles
© Springer International Publishing AG, part of Springer Nature 2018. Compared to traditional cars, where the driver has most of their attention allocated on the road and on driving tasks, in fully autonomous vehicles it is likely that the user would not need to intervene with driving related functions meaning that there will be little need for HMIs to have features and functionality relating to these factors. However, there will be an opportunity for a range of other interactions with the user. As such, designers and researchers need to have an understanding of what is actually needed or expected and how to balance the type of functionality they make available. Also, in HMI design, the design principles need to be considered in relation to a range of user characteristics, such as age, and sensory, cognitive and physical ability and other impairments. In this study, we proposed an HMI specially designed for connected autonomous vehicles with a focus on older adults. We examined older adults’ preferences of CAV HMI functions, and, the degree to which individual differences (e.g., personality, attitude towards computers, trust in technology, cognitive functioning) correlate with preferences for these functions. Thirty-one participants (M age = 67.52, SD = 7.29), took part in the study. They had to interact with the HMI and rate its functions based on the importance and likelihood of using them. Results suggest that participants prefer adaptive HMIs, with journey planner capabilities. As expected, as it is a CAV HMI, the Information and Entertainment functions are also preferred. Individual differences have limited relationship with HMI preferences
Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella
Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Influential Periods in Longitudinal Clinical Cardiovascular Health Scores
The prevalence of ideal cardiovascular health (CVH) among adults in the United States is low and decreases with age. Our objective was to identify specific age windows when the loss of CVH accelerates, to ascertain preventive opportunities for intervention. Data were pooled from 5 longitudinal cohorts (Project Heartbeat!, Cardiovascular Risk in Young Finns Study, The Bogalusa Heart Study, Coronary Artery Risk Development in Young Adults, Special Turku Coronary Risk Factor Intervention Project) from the United States and Finland from 1973 to 2012. Individuals with clinical CVH factors (i.e., body mass index, blood pressure, cholesterol, blood glucose) measured from ages 8 to 55 years were included. These factors were categorized and summed into a clinical CVH score ranging from 0 (worst) to 8 (best). Adjusted, segmented, linear mixed models were used to estimate the change in CVH over time. Among the 18,343 participants, 9,461 (52%) were female and 12,346 (67%) were White. The baseline mean (standard deviation) clinical CVH score was 6.9 (1.2) at an average age of 17.6 (8.1) years. Two inflection points were estimated: at 16.9 years (95% confidence interval: 16.4, 17.4) and at 37.2 years (95% confidence interval: 32.4, 41.9). Late adolescence and early middle age appear to be influential periods during which the loss of CVH accelerates. </p
GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD–associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD–associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD
Influential Periods in Longitudinal Clinical Cardiovascular Health Scores
The prevalence of ideal cardiovascular health (CVH) among adults in the United States is low and decreases with age. Our objective was to identify specific age windows when the loss of CVH accelerates, to ascertain preventive opportunities for intervention. Data were pooled from 5 longitudinal cohorts (Project Heartbeat!, Cardiovascular Risk in Young Finns Study, The Bogalusa Heart Study, Coronary Artery Risk Development in Young Adults, Special Turku Coronary Risk Factor Intervention Project) from the United States and Finland from 1973 to 2012. Individuals with clinical CVH factors (i.e., body mass index, blood pressure, cholesterol, blood glucose) measured from ages 8 to 55 years were included. These factors were categorized and summed into a clinical CVH score ranging from 0 (worst) to 8 (best). Adjusted, segmented, linear mixed models were used to estimate the change in CVH over time. Among the 18,343 participants, 9,461 (52%) were female and 12,346 (67%) were White. The baseline mean (standard deviation) clinical CVH score was 6.9 (1.2) at an average age of 17.6 (8.1) years. Two inflection points were estimated: at 16.9 years (95% confidence interval: 16.4, 17.4) and at 37.2 years (95% confidence interval: 32.4, 41.9). Late adolescence and early middle age appear to be influential periods during which the loss of CVH accelerates.publishedVersionPeer reviewe
Implementation of outpatient schema therapy for borderline personality disorder: study design
ABSTRACT: BACKGROUND: Schema Therapy (ST) is an integrative psychotherapy based upon a cognitive schema model which aims at identifying and changing dysfunctional schemas and modes through cognitive, experiential and behavioral pathways. It is specifically developed for patients with personality disorders. Its effectiveness and efficiency have been demonstrated in a few randomized controlled trials, but ST has not been evaluated in regular mental healthcare settings. This paper describes the study protocol of a multisite randomized 2-group design, aimed at evaluating the implementation of outpatient schema therapy for patients with borderline personality disorder (BPD) in regular mental healthcare and at determining the added value of therapist telephone availability outside office hours in case of crisis. METHODS/DESIGN: Patient outcome measures will be assessed with a semi-structured interview and self-report measures on BPD, therapeutic alliance, quality of life, costs and general psychopathology at baseline, 6, 12, 18 and 36 months. Intention-to-treat analyses will be executed with survival analysis for dichotomous variables, and one-sample t-tests and ANCOVAs for continuous variables with baseline as covariate and condition as between group factor. All tests will be two-tailed with a significance level of 5%. DISCUSSION: The study will provide an answer to the question whether ST can be effectively implemented and whether phone support by the therapist has an additional value. TRIAL REGISTRATION: The Dutch Cochrane Center, NTR (TC = 1781
- …